87 research outputs found

    Safety and efficacy of the supreme biodegradable polymer sirolimus-eluting stent in patients with diabetes mellitus

    Get PDF
    Patients with diabetes mellitus (DM) have worse outcomes following percutaneous coronary intervention than nondiabetic patients. The novel Supreme DES is a biodegradable polymer sirolimus-eluting stent designed to synchronize early drug delivery, limiting the potential for long-term inflammatory response. The purpose of this study was to evaluate the safety and efficacy of the Supreme DES in patients with DM. Methods This is a prespecified analysis of the diabetic subgroup from the PIONEER III randomized (2:1), controlled trial, comparing the Supreme DES with a durable polymer everolimus-eluting stent (DP-EES). The primary safety and efficacy composite endpoint was target lesion failure at 1 year, a composite of cardiac death, target vessel myocardial infarction, or clinically driven target lesion revascularization. Results The PIONEER III trial randomized 1629 patients, of which 494 (30.3%) had DM with 331 (398 lesions) randomly assigned to Supreme DES and 163 (208 lesions) to DP-EES. Among patients with DM, target lesion failure at 1 year was 6.1% (20/331) with Supreme DES vs 3.7% (6/163) with DP-EES (hazard ratio = 1.65; 95% confidence interval = 0.66-4.10, P = .28). The composite of cardiac death or target vessel myocardial infarction was 3.3% (11/331) with Supreme DES and 3.7% (6/163) with DP-EES (hazard ratio = 0.90; 95% confidence interval = 0.33-2.44, P = .83). There were no significant differences in other secondary endpoints. Conclusions This prespecified substudy of the PIONEER III trial demonstrated the relative safety and efficacy of the novel Supreme DES when compared with commercially available DP-EES in diabetics at 1 year. Longer term follow-up will be required to ensure continued safety and efficacy of the Supreme DES

    Cancer Cell Invasion Is Enhanced by Applied Mechanical Stimulation

    Get PDF
    Metastatic cells migrate from the site of the primary tumor, through the stroma, into the blood and lymphatic vessels, finally colonizing various other tissues to form secondary tumors. Numerous studies have been done to identify the stimuli that drive the metastatic cascade. This has led to the identification of multiple biochemical signals that promote metastasis. However, information on the role of mechanical factors in cancer metastasis has been limited to the affect of compliance. Interestingly, the tumor microenvironment is rich in many cell types including highly contractile cells that are responsible for extensive remodeling and production of the dense extracellular matrix surrounding the cancerous tissue. We hypothesize that the mechanical forces produced by remodeling activities of cells in the tumor microenvironment contribute to the invasion efficiency of metastatic cells. We have discovered a significant difference in the extent of invasion in mechanically stimulated verses non-stimulated cell culture environments. Furthermore, this mechanically enhanced invasion is dependent upon substrate protein composition, and influenced by topography. Finally, we have found that the protein cofilin is needed to sense the mechanical stimuli that enhances invasion. We conclude that other types of mechanical signals in the tumor microenvironment, besides the rigidity, can enhance the invasive abilities of cancer cells in vitro. We further propose that in vivo, non-cancerous cells located within the tumor micro-environment may be capable of providing the necessary mechanical stimulus during the remodeling of the extracellular matrix surrounding the tumor

    Recruited Cells Can Become Transformed and Overtake PDGF-Induced Murine Gliomas In Vivo during Tumor Progression

    Get PDF
    Gliomas are thought to form by clonal expansion from a single cell-of-origin, and progression-associated mutations to occur in its progeny cells. Glioma progression is associated with elevated growth factor signaling and loss of function of tumor suppressors Ink4a, Arf and Pten. Yet, gliomas are cellularly heterogeneous; they recruit and trap normal cells during infiltration.We performed lineage tracing in a retrovirally mediated, molecularly and histologically accurate mouse model of hPDGFb-driven gliomagenesis. We were able to distinguish cells in the tumor that were derived from the cell-of-origin from those that were not. Phenotypic, tumorigenic and expression analyses were performed on both populations of these cells. Here we show that during progression of hPDGFb-induced murine gliomas, tumor suppressor loss can expand the recruited cell population not derived from the cell-of-origin within glioma microenvironment to dominate regions of the tumor, with essentially no contribution from the progeny of glioma cell-of-origin. Moreover, the recruited cells can give rise to gliomas upon transplantation and passaging, acquire polysomal expression profiles and genetic aberrations typically present in glioma cells rather than normal progenitors, aid progeny cells in glioma initiation upon transplantation, and become independent of PDGFR signaling.These results indicate that non-cell-of-origin derived cells within glioma environment in the mouse can be corrupted to become bona fide tumor, and deviate from the generally established view of gliomagenesis

    The unprecedented 2017-2018 stratospheric smoke event : Decay phase and aerosol properties observed with the EARLINET

    Get PDF
    © Author(s) 2019. This open access work is distributed under the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/).Six months of stratospheric aerosol observations with the European Aerosol Research Lidar Network (EARLINET) from August 2017 to January 2018 are presented. The decay phase of an unprecedented, record-breaking stratospheric perturbation caused by wildfire smoke is reported and discussed in terms of geometrical, optical, and microphysical aerosol properties. Enormous amounts of smoke were injected into the upper troposphere and lower stratosphere over fire areas in western Canada on 12 August 2017 during strong thunderstorm-pyrocumulonimbus activity. The stratospheric fire plumes spread over the entire Northern Hemisphere in the following weeks and months. Twenty-eight European lidar stations from northern Norway to southern Portugal and the eastern Mediterranean monitored the strong stratospheric perturbation on a continental scale. The main smoke layer (over central, western, southern, and eastern Europe) was found at heights between 15 and 20 km since September 2017 (about 2 weeks after entering the stratosphere). Thin layers of smoke were detected at heights of up to 22-23 km. The stratospheric aerosol optical thickness at 532 nm decreased from values > 0.25 on 21-23 August 2017 to 0.005-0.03 until 5-10 September and was mainly 0.003-0.004 from October to December 2017 and thus was still significantly above the stratospheric background (0.001-0.002). Stratospheric particle extinction coefficients (532 nm) were as high as 50-200 Mm-1 until the beginning of September and on the order of 1 Mm-1 (0.5- 5 Mm-1) from October 2017 until the end of January 2018. The corresponding layer mean particle mass concentration was on the order of 0.05-0.5 μg m-3 over these months. Soot particles (light-absorbing carbonaceous particles) are efficient ice-nucleating particles (INPs) at upper tropospheric (cirrus) temperatures and available to influence cirrus formation when entering the tropopause from above. We estimated INP concentrations of 50-500 L-1 until the first days in September and afterwards 5-50 L-1 until the end of the year 2017 in the lower stratosphere for typical cirrus formation temperatures of -55 ?C and an ice supersaturation level of 1.15. The measured profiles of the particle linear depolarization ratio indicated a predominance of nonspherical smoke particles. The 532 nm depolarization ratio decreased slowly with time in the main smoke layer from values of 0.15-0.25 (August-September) to values of 0.05-0.10 (October-November) and < 0.05 (December-January). The decrease of the depolarization ratio is consistent with aging of the smoke particles, growing of a coating around the solid black carbon core (aggregates), and thus change of the shape towards a spherical form. We found ascending aerosol layer features over the most southern European stations, especially over the eastern Mediterranean at 32-35? N, that ascended from heights of about 18-19 to 22-23 km from the beginning of October to the beginning of December 2017 (about 2 km per month). We discuss several transport and lifting mechanisms that may have had an impact on the found aerosol layering structures.Peer reviewe

    Tropospheric and stratospheric smoke over Europe as observed within EARLINET/ACTRIS in summer 2017

    Get PDF
    For several weeks in summer 2017, strong smoke layers were observed over Europe at numerous EARLINET stations. EARLINET is the European research lidar network and part of ACTRIS and comprises more than 30 ground-based lidars. The smoke layers were observed in the troposphere as well as in the stratosphere up to 25 km from Northern Scandinavia over whole western and central Europe to the Mediterranean regions. Backward trajectory analysis among other tools revealed that these smoke layers originated from strong wild fires in western Canada in combination with pyrocumulus convection. An extraordinary fire event in the mid of August caused intense smoke layers that were observed across Europe for several weeks starting on 18 August 2017. Maximum aerosol optical depths up to 1.0 at 532 nm were observed at Leipzig, Germany, on 22 August 2017 during the peak of this event. The stratospheric smoke layers reached extinction coefficient values of more than 600 Mm−1 at 532 nm, a factor of 10 higher than observed for volcanic ash after the Pinatubo eruption in the 1990s. First analyses of the intensive optical properties revealed low particle depolarization values at 532 nm for the tropospheric smoke (spherical particles) and rather high values (up to 20%) in the stratosphere. However, a strong wavelength dependence of the depolarization ratio was measured for the stratospheric smoke. This indicates irregularly shaped stratospheric smoke particles in the size range of the accumulation mode. This unique depolarization feature makes it possible to distinguish clearly smoke aerosol from cirrus clouds or other aerosol types by polarization lidar measurements. Particle extinction-to-backscatter ratios were rather low in the order of 40 to 50 sr at 355 nm, while values between 70-90 sr were measured at higher wavelengths. In the western and central Mediterranean, stratospheric smoke layers were most prominent in the end of August at heights between 16 and 20 km. In contrast, stratospheric smoke started to occur in the eastern Mediterranean (Cyprus and Israel) in the beginning of September between 18 and 23 km. Stratospheric smoke was still visible in the beginning of October at certain locations (e.g. Evora, Portugal), while tropospheric smoke was mainly observed until the end of August within Europe. An overview of the smoke layers measured at several EARLINET sites will be given. The temporal development of these layers as well as their geometrical and optical properties will be presented

    Hypoxia-Inducible Factors in Tumor Cell Differentiation and Tumor Vascularization

    No full text
    Mammalian cells, including tumor cells, adapt to hypoxia via stabilization of two transcription factors - Hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha. Among other consequences, hypoxia is a main driving force behind angiogenesis. The differentiation stage of tumor cells is recognized as an important clinical factor in several malignancies including neuroblastoma. Tumors with an immature phenotype are more aggressive than differentiated tumors. Moreover, recent hypotheses on tumor progression stipulate that maintenance of tumor growth is dependent on immature cells called tumor-initiating cells (TICs). Here, we identify HIF-2alpha as a marker of immature neuroblastoma cells and TICs isolated from patient bone marrows irrespective of oxygen levels. We further demonstrate that HIF-2alpha is required to maintain the undifferentiated state, as knockdown of HIF-2alpha induced differentiation. Knockdown of HIF-2alpha revealed a role for HIF-2alpha in recruitment of new blood vessels to experimental neuroblastomas, as the resulting xenograft tumors were highly necrotic. In addition and in agreement with in vitro data, we show that HIF-1alpha and HIF-2alpha proteins are differentially regulated in clinical neuroblastomas. While both proteins correlated with expression of VEGF, only HIF-2alpha was associated with aggressive disease and only HIF-1alpha correlated with tumor hypoxia. Finally, we demonstrate a novel mechanism of HIF regulation of endothelial tube formation via Notch regulation. HIF-dependent JAG2 induction in hypoxic tumor cells alters Notch activity in tumor cells and adjacent endothelial cells and thus represents a novel layer of complexity of hypoxia/Notch interplay. Together, our findings reveal novel roles of HIFs in regulation of tumor cell differentiation and tumor vascularization
    corecore