1,859 research outputs found

    Rapid deconvolution of low-resolution time-of-flight data using Bayesian inference

    Get PDF
    The deconvolution of low-resolution time-of-flight data has numerous advantages, including the ability to extract additional information from the experimental data. We augment the well-known Lucy-Richardson deconvolution algorithm using various Bayesian prior distributions and show that a prior of second-differences of the signal outperforms the standard Lucy-Richardson algorithm, accelerating the rate of convergence by more than a factor of four, while preserving the peak amplitude ratios of a similar fraction of the total peaks. A novel stopping criterion and boosting mechanism are implemented to ensure that these methods converge to a similar final entropy and local minima are avoided. Improvement by a factor of two in mass resolution allows more accurate quantification of the spectra. The general method is demonstrated in this paper through the deconvolution of fragmentation peaks of the 2,5-dihydroxybenzoic acid matrix and the benzyltriphenylphosphonium thermometer ion, following femtosecond ultraviolet laser desorption

    A consistent molecular hydrogen isotope chemistry scheme based on an independent bond approximation

    Get PDF
    The isotopic composition of molecular hydrogen (H<sub>2</sub>) produced by photochemical oxidation of methane (CH<sub>4</sub>) and Volatile Organic Compounds (VOCs) is a key quantity in the global isotope budget of (H<sub>2</sub>). The many individual reaction steps involved complicate its investigation. Here we present a simplified structure-activity approach to assign isotope effects to the individual elementary reaction steps in the oxidation sequence of CH<sub>4</sub> and some other VOCs. The approach builds on and extends the work by Gerst and Quay (2001) and Feilberg et al. (2007b). The description is generalized and allows the application, in principle, also to other compounds. The idea is that the C-H and C-D bonds – seen as reactive sites – have similar relative reaction probabilities in isotopically substituted, but otherwise identical molecules. The limitations of this approach are discussed for the reaction CH<sub>4</sub>+Cl. The same approach is applied to VOCs, which are important precursors of H<sub>2</sub> that need to be included into models. Unfortunately, quantitative information on VOC isotope effects and source isotope signatures is very limited and the isotope scheme at this time is limited to a strongly parameterized statistical approach, which neglects kinetic isotope effects. Using these concepts we implement a full hydrogen isotope scheme in a chemical box model and carry out a sensitivity study to identify those reaction steps and conditions that are most critical for the isotope composition of the final H<sub>2</sub> product. The reaction scheme is directly applicable in global chemistry models, which can thus include the isotope pathway of H<sub>2</sub> produced from CH<sub>4</sub> and VOCs in a consistent way

    Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning

    Get PDF
    In this study, we identify a biomass-burning signal in molecular hydrogen (H<sub>2</sub>) over the Amazonian tropical rainforest. To quantify this signal, we measure the mixing ratios of H<sub>2</sub> and several other species as well as the H<sub>2</sub> isotopic composition in air samples that were collected in the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) aircraft campaign during the dry season. We derive a relative H<sub>2</sub> emission ratio with respect to carbon monoxide (CO) of 0.31 ± 0.04 ppb ppb<sup>−1</sup> and an isotopic source signature of −280 ± 41&permil; in the air masses influenced by tropical biomass burning. In order to retrieve a clear source signal that is not influenced by the soil uptake of H<sub>2</sub>, we exclude samples from the atmospheric boundary layer. This procedure is supported by data from a global chemistry transport model. The &Delta;H<sub>2</sub> / &Delta;CO emission ratio is significantly lower than some earlier estimates for the tropical rainforest. In addition, our results confirm the lower values of the previously conflicting estimates of the H<sub>2</sub> isotopic source signature from biomass burning. These values for the emission ratio and isotopic source signatures of H<sub>2</sub> from tropical biomass burning can be used in future bottom-up and top-down approaches aiming to constrain the strength of the biomass-burning source for H<sub>2</sub>. Hitherto, these two quantities relied only on combustion experiments or on statistical relations, since no direct signal had been obtained from in-situ observations

    Carbonic anhydrases CA1 and CA4 function in atmospheric CO2-modulated disease resistance

    Get PDF
    Main conclusion Carbonic anhydrases CA1 and CA4 attenuate plant immunity and can contribute to altered disease resistance levels in response to changing atmospheric CO2 conditions. Abstract β-Carbonic anhydrases (CAs) play an important role in CO2 metabolism and plant development, but have also been implicated in plant immunity. Here we show that the bacterial pathogen Pseudomonas syringae and application of the microbe-associated molecular pattern (MAMP) flg22 repress CA1 and CA4 gene expression in Arabidopsis thaliana. Using the CA double-mutant ca1ca4, we provide evidence that CA1 and CA4 play an attenuating role in pathogen- and flg22-triggered immune responses. In line with this, ca1ca4 plants exhibited enhanced resistance against P. syringae, which was accompanied by an increased expression of the defense-related genes FRK1 and ICS1. Under low atmospheric CO2 conditions (150 ppm), when CA activity is typically low, the levels of CA1 transcription and resistance to P. syringae in wild-type Col-0 were similar to those observed in ca1ca4. However, under ambient (400 ppm) and elevated (800 ppm) atmospheric CO2 conditions, CA1 transcription was enhanced and resistance to P. syringae reduced. Together, these results suggest that CA1 and CA4 attenuate plant immunity and that differential CA gene expression in response to changing atmospheric CO2 conditions contribute to altered disease resistance levels

    Review of applications of SIMDEUM, a stochastic drinking water demand model with small temporal and spatial scale

    Get PDF
    Many researchers have developed drinking water demand models with various temporal and spatial scales. A limited number of models are available at a temporal scale of one second and a spatial scale of a single home. Reasons for building these models were described in the papers in which the models were introduced, along with a discussion on potential applications. However, the predicted applications are seldom re-examined. As SIMDEUM, a stochastic end-use model for drinking water demand, has often been applied in research and practice since it was developed, we are reexamining its applications in this paper. SIMDEUM’s original purpose was to calculate maximum demands in order to be able to design self-cleaning networks. Yet, the model has been useful in many more applications. This paper gives an overview of the many fields of application of SIMDEUM and shows where this type of demand model is indispensable and where it has limited practical value. This overview also leads to an understanding of requirements on demand models in various applications

    Развитие ионизационного монитора поперечного сечения протонного пучка линейного ускорителя ИЯИ РАН

    Get PDF
    Для обеспечения прозрачных измерений поперечного сечения и профилей токовых импульсов в широком диапазоне энергий и амплитуд разработан и установлен на ускорителе специальный ионизационный монитор поперечного сечения (ИМПС) на остаточном газе. ИМПС оборудован зеркально-линзовым трактом для транспортировки изображения пучка от детектора до ТВ-камеры и защиты ПЗС-матрицы и электроники ТВ-камеры от бомбардировки нейтронами и γ-квантами. В работе приводится схема и описание датчика, а также некоторые детали программного и аппаратного обеспечения системы съема и обработки изображений. Представлены полученные результаты измерений импульсного тока протонов.Для забезпечення прозорих вимірів поперечного переріза й профілів струмових імпульсів у широкому діапазоні енергій і амплітуд розроблений і встановлений на прискорювачі спеціальний іонізаційний монітор поперечного переріза (ІМПС) на залишковому газі. ІМПС обладнаний дзеркально-лінзовим трактом для транспортування зображення пучка від детектора до ТВ-камери і захисту Пзс-матриці й електроніки ТВ-камеры від бомбардування нейтронами і γ-квантами. У роботі приводиться схема й опис датчика, а також деякі деталі програмного й апаратного забезпечення системи знімання й обробки зображень. Представлено отримані результати вимірів імпульсного струму протонів.To provide non-intercepting measurements of beam pulse transverse section and profile the special residual gas ion transverse section monitor (ITSM) for wide energy and amplitude range is developed and installed on the accelerator. ITSM is provided by lens-mirror line for transport beam image from the detector to TV camera and saving CCD and electronics of TV camera from neutron and γ hitting. The ITSM functioning details and image processing system are described. The available results of beam pulse measurements are presented

    Review of applications for SIMDEUM, a stochastic drinking water demand model with a small temporal and spatial scale

    Get PDF
    Many researchers have developed drinking water demand models with various temporal and spatial scales. A limited number of models is available at a temporal scale of 1 s and a spatial scale of a single home. The reasons for building these models were described in the papers in which the models were introduced, along with a discussion on their potential applications. However, the predicted applications are seldom re-examined. SIMDEUM, a stochastic end-use model for drinking water demand, has often been applied in research and practice since it was developed. We are therefore re-examining its applications in this paper. SIMDEUM's original purpose was to calculate maximum demands in order to design self-cleaning networks. Yet, the model has been useful in many more applications. This paper gives an overview of the many fields of application for SIMDEUM and shows where this type of demand model is indispensable and where it has limited practical value. This overview also leads to an understanding of the requirements for demand models in various applications

    Predicting arene rate coefficients with respect to hydroxyl and other free radicals in the gas-phase: a simple and effective method using a single topological descriptor

    No full text
    International audienceThe reactivity of aromatic compounds is of great relevance to pure and applied chemical disciplines, yet existing methods for estimating gas-phase rate coefficients for their reactions with free radicals lack accuracy and universality. Here a novel approach is taken, whereby strong relationships between rate coefficients of aromatic hydrocarbons and a Randi?-type topological index are investigated, optimized and developed into a method which requires no specialist software or computing power. Measured gas-phase rate coefficients for the reaction of aromatic hydrocarbons with OH radicals were correlated with a calculated Randi?-type index, and optimized by including a term for side chain length. Although this method is exclusively for use with hydrocarbons, it is more diverse than any single existing methodology since it incorporates alkenylbenzenes into correlations, and can be extended towards other radical species such as O(3P) (and tentatively NO3, H and Cl). A comparison (with species common to both techniques) is made between the topological approach advocated here and a popular approach based on electrophilic subsituent constants, where it compares favourably. A modelling study was carried out to assess the impact of using estimated rate coefficients as opposed to measured data in an atmospheric model. The difference in model output was negligible for a range of NOx concentrations, which implies that this method has utility in complex chemical models. Strong relationships (e.g. for OH, R2=0.96) between seemingly diverse compounds including benzene, multisubstituted benzenes with saturated, unsaturated, aliphatic and cyclic substitutions and the nonbenzenoid aromatic, azulene suggests that the Randi?-type index presented here represents a new and effective way of describing aromatic reactivity, based on a quantitative structure-activity relationship (QSAR)
    corecore