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ABSTRACT
The deconvolution of low-resolution time-of-flight data has numerous advantages, including the ability to extract additional information
from the experimental data. We augment the well-known Lucy-Richardson deconvolution algorithm using various Bayesian prior distribu-
tions and show that a prior of second-differences of the signal outperforms the standard Lucy-Richardson algorithm, accelerating the rate
of convergence by more than a factor of four, while preserving the peak amplitude ratios of a similar fraction of the total peaks. A novel
stopping criterion and boosting mechanism are implemented to ensure that these methods converge to a similar final entropy and local
minima are avoided. Improvement by a factor of two in mass resolution allows more accurate quantification of the spectra. The general
method is demonstrated in this paper through the deconvolution of fragmentation peaks of the 2,5-dihydroxybenzoic acid matrix and the
benzyltriphenylphosphonium thermometer ion, following femtosecond ultraviolet laser desorption.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5129343., s

I. INTRODUCTION

Mass spectrometry (MS) is practiced in various settings, includ-
ing commercial applications such as quality control1 and pharma-
cokinetics,2 as well as basic scientific investigations such as pro-
teomics3 and biological pathway analysis.4 While the operation
of mass spectrometers can be regarded as a routine and high-
throughput task, the correct interpretation of the spectra requires
a chemistry background and often ample experience. Recent inter-
est in the detection of biomarkers5–7 further underlines the signif-
icance of accurate and thorough interpretation of mass spectro-
metric data. It has been demonstrated that it is possible to dis-
tinguish between healthy and unhealthy domains of mammalian
tissue sections by comparison with their respective mass spectro-
metric data.8–10 This opens up the possibility of compiling a mass
spectrometric database of biomarkers associated with recognized

diseases for the identification of unhealthy tissue.10–12 The ability to
distinguish between these domains should permit the accurate iden-
tification of critical boundaries using mass spectrometric imaging
techniques.

When investigating an extensive mass range, the large amounts
of acquired data present an inescapable dilemma: one must either
deal with very large raw datasets or else compress the raw data by
averaging. While compression is a simple and adequate solution
for many applications, there are cases where it destroys valuable
information. A typical example would be pulsed laser beam analyses
where it might be of interest to study the mass spectra as a function
of depth or shot number.13–16

While it has always lurked in the background, the data com-
pression dilemma has not been acute in mass spectrometry so far,
largely because investigations and results were either qualitative
in nature or couched in simple terms such as one-dimensional
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time-independent data. As more complex measurements such as
mass spectrometry imaging become feasible, the negative effects of
the trade-off between much larger datasets and information loss
are increasingly being felt. Each additional variable or differential
quantity results in a significant increase in the number of possible
outcomes, resulting in low signal-to-noise ratios.

While it is possible to obtain favorable results by the brute
force of long acquisition times, this may have unintended conse-
quences. As an example, more accurate measurements could be
obtained by the adoption of the minimum focal spot size of the laser
beam to maximize resolution in mapping the boundary between
two domains. The resulting longer acquisition time, however, is self-
defeating because signal intensity drops in time due to the decreasing
number of ions available for sampling.17–20 It is common knowledge
that the concentration of the biomarkers of interest is usually orders
of magnitude lower than that of the closely related mass species in
the surrounding tissue which frequently includes species which con-
tribute to ion suppression and therefore impede detection of these
biomarkers.3,21,22

In a similar vein, mass spectrometry signals originating from
a variety of ion sources are generally not constant in time. These
time variabilities introduce correlations and thereby obscure the
genuine average mass spectrum. For example, the intensity chro-
matographs of liquid samples irradiated by laser pulses under atmo-
spheric conditions are highly transient. The fluctuating liquid inter-
face is translated within the focal plane of the laser beam, which
produces the undesired outcome of fluctuations in the signal inten-
sity measured by the mass spectrometer.23 These fluctuations intro-
duce the above-mentioned time correlation artifacts, so that time
averaging is inappropriate, at least until the appropriate time cor-
relation scales have been determined. Time-dependent mass spec-
troscopy has turned out to be much more challenging than initially
expected.

Faced with such complications, one could opt for shorter runs
with fewer data. Shorter acquisition times, however, make it harder
to distinguish signal from noise and to disentangle peaks. There is
no escape from the dilemma.

Fortunately, there is a way to obtain quantitative answers even
when the data are sparse, multivariate, and/or complex. Encoun-
tering the same issues, fields such as particle physics and cosmol-
ogy have increasingly applied the methods of Bayesian inference
with success.24–26 It therefore seems natural to us to apply simi-
lar methods to mass spectrometry data. Some Bayesian research
has already been done with regard to separating joint mass and
charge-dependent spectra into zero-charge mass distributions, and
the related open-source software dubbed UniDec by the authors is
available.27

In this paper, we investigate the application of Bayesian meth-
ods to time-of-flight mass spectrometry data. Our two main objec-
tives are to test the use of Bayesian deconvolution to improve
mass resolution of peaks and to evaluate the robustness of the
methodology. The improved resolution of a deconvolved sig-
nal permits more quantitative statements regarding the fragmen-
tation pathway of a well-known thermometer ion during fem-
tosecond ultraviolet desorption. Once the proposed deconvolu-
tion methods have been stress-tested in this simple environment,
they may be extended to assist in the decoupling of shot-to-shot
phenomena.

As a valuable candidate measurement to examine the poten-
tial applicability and value of developing this framework, we selected
a fragmentation pathway study, which characterizes the transfer of
internal energy occurring between the matrix and the analyte ions
during the laser desorption. Although matrix-assisted laser desorp-
tion/ionization (MALDI) is routinely used,28 the underlying ion-
ization mechanisms are not adequately understood and therefore
remain a topic of active investigation.29–31 Furthermore, since the
internal energy of an ion determines the potential fragmentation
pathways, it is a useful property for characterizing the softness of
a given ionization mechanism.32–37 However, due to the particular
nature of these measurements, it is not experimentally appropri-
ate to increase the mass resolution by implementing delayed ion
extraction or an ion reflectron, since either of these interventions
would eliminate valuable quantitative information from the mass
spectra.38–40 For example, reflecting analyzers impede the assign-
ment of the fragments produced within the ionization and accelera-
tion regions, while also introducing undesirable mass discrimination
effects.41–43 We therefore decided to use, as a case study, the lin-
ear mass spectra that resulted from the collisional transfer of energy
during the laser desorption process from the 2,5-dihydroxybenzoic
acid (DHB) matrix to the benzyltriphenylphosphonium (BTP) ther-
mometer ion.

The relevant experiments were performed on our in-house
designed linear time-of-flight mass spectrometer with a mass res-
olution of approximately 200 in the mass range of interest. As this
system has been discussed before,44 we sketch the relevant informa-
tion only briefly. The third harmonic (λ = 343 nm, τ = 190 fs) output
pulses from a regeneratively amplified Yb:KGW oscillator (Pharos
SP1.5, Light Conversion, Vilnius, Lithuania) was used for sample
irradiation. Desorption was performed in the transmission geom-
etry, after which the positive ions were accelerated to the nominal
kinetic energy of 5 keV in a static, two-stage extraction region, sup-
plemented by a 10 keV postacceleration stage reaching the detector.
Positive ions were detected with a dual-stage chevron microchannel
plate detector (F9890, Hamamatsu, Bridgewater, USA). These ion
signals were recorded by an 8-bit digitizer (DC211, Acqiris, Plan-
les-Ouates, Switzerland) operating at a 1 ns sampling rate. For all
the data presented, 100 single-shot spectra were averaged before
performing the deconvolution. The final results were normalized
relative to the 2,5-dihydroxybenzoic acid (DHB)45 matrix parent
ion.

II. METHODOLOGY
In the supplementary material, we derive in detail our

Bayesian deconvolution methods for extracting the underlying sig-
nals from low-resolution, experimental time-of-flight data and com-
pare them to several existing methods. Due to the lengthiness of
the derivations, we here highlight only the salient points. Our
approach is based on the Lucy-Richardson (Poisson-likelihood)
deconvolution algorithm46,47 which we supplement by the inclu-
sion of various Bayesian prior distributions using the split-gradient
method.48,49

The mass spectrum data are represented as a set of discrete
counts nb, one for each m/z interval, channel, or bin b, where the
joint intervals of bins b = 1, 2, . . ., B cover the entirem/z interval. The
individual events counted in each bin during the acquisition follow a

J. Chem. Phys. 151, 244307 (2019); doi: 10.1063/1.5129343 151, 244307-2

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5129343#suppl


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Poisson distribution50 p(nb ∣ λb) = e−λbλnbb /nb!, where the parameter
λb > 0 represents the signal intensity; it is proportional to the acqui-
sition time period. The vector n = {nb}Bb=1 therefore represents the
time-aggregated data of the entire spectrum. Assuming that counts
nb are mutually independent, the joint probability of all counts given
the parameters λ = {λb}Bb=1, also termed the likelihood, is given by
the following:

p(n ∣ λ) =
B

∏

b=1
p(nb ∣ λb). (1)

The signal intensity λb is, however, the result of spectral broadening,
i.e., the sum of contributions from narrower underlying peaks which
could not be distinguished during measurement and may also partly
fall into other nearby bins. Mathematically speaking, λb is the result
of a convolution. The task at hand is to deconvolve the spectrum, i.e.,
to reverse that convolution so as to separate, as well as possible, the
low-resolution data into high-resolution peaks, using, where possi-
ble, other pertinent information such as known detector responses.
The objective is to find a set of parameters, s∗ = {s∗b }

B
b=1, which rep-

resent the optimal amplitude approximations for each bin b while
interpreting any small s∗b as background noise.

Convolution and deconvolution are modeled as linear pro-
cesses. Define sc to be the true peak amplitude in bin c and let A
be the matrix whose components Abc constitute the peak broaden-
ing contribution which sc makes to the data in nearby bins b. The
Poisson parameter is then given by

λb = ∑
c
Abcsc (2)

or λ = As in vector-matrix notation. Following the approximations
set out in the supplementary material, the likelihood is reduced to
a variant of the Kullback-Leibler divergence called the I-divergence,
which is the consistent measure for images and non-negative data
in general.51 By enforcing normalization, the negative logarithm
of the likelihood L can be expressed as the so-called I-divergence,
L[s] = − log p(n ∣ λ = As) = I[n ∣As]. The I-divergence, also called
the relative entropy, replaces the metric distance which appears in
the least-squares method. The desired deconvolved parameters s∗

are obtained from its minimization.
Our derivation in the supplementary material initially closely

follows the Lucy-Richardson algorithm. However, the latter does
not make use of priors, and priors are essential within a Bayesian
framework in general and specifically for s. Correspondingly, we
are tasked to maximize not only the likelihood but the joint prob-
ability or equivalently to minimize the negative joint probability
J[s] = − log p(n, s), the sum of the negative log likelihood L, and log
prior P[s] = − log p(s). As explained more fully below, a regulariza-
tion parameter β is introduced which is the strength of the likelihood
relative to the prior and is conventionally a coefficient of the prior.52

The minimization is hence performed on

J[s] = L[s] + βP[s]. (3)

The system can be iteratively solved using the split-gradient method
(SGM).48,49 Due to the influence of the prior, the SGM in a mul-
tiplicative form does not always converge, in which case, the regu-
larization parameter β has to be reduced and thereby the algorithm

comes to resemble the Lucy-Richardson algorithm53 more closely
which has no prior at all.

We now turn to the construction of a range of suitable priors
reflecting possible different information available to the practitioner.
A computationally simple family of priors is provided by the Gaus-
sian distribution52 with different choices for the so-called Toeplitz
matrix Bj and a scale parameter Λ. The Toeplitz matrix is the math-
ematical representation of a fixed function applied to each bin posi-
tion. For example, the first discrete difference is the difference in
the signal between two neighboring bins and can be represented
by a Toeplitz matrix. The scale parameter Λ and the regularization
parameter β have the same effect on the algorithm and are thus not
independent. However, for pedagogy, we keep these parameters sep-
arate, as it is then easier to design a clear regularization strategy for β.
We will set Λ to its expected value on each iteration such that it acts
as a natural normalization of the prior. We, therefore, implemented
the family of priors

p(s ∣Λ,Bj) = (
Λ
2π
)

B/2
e−Λs

TBT
j Bjs/2 (4)

for different matrices Bj reflecting the a priori information as fol-
lows: we may either have knowledge that the prior distribution
depends on the signal itself, or we may know that it depends on a
discrete difference between signals or even on a higher-order differ-
ence. The choice of B0 = 0 then reflects the choice of having no prior
at all, while dependence on the signal itself would motivate the usage
of B1 = I or, if a constant function is preferred, the first differences
of the signal B2. Choices to use higher-order signal differences are
reflected in the corresponding second-order difference matrix B3 or
the third-order B4 difference.

In addition to generalizing the Lucy-Richardson algorithm,
which is based on a Poisson-distributed likelihood, we have also
implemented an equivalent methodology for Gaussian likelihoods
(ISRA);54 see the last section of the supplementary material. The last
part of our methodology, namely, our stopping criterion monitoring
the mean of the residual distribution, and the role of the regular-
ization parameter β are discussed in the numerical implementation
section.

III. NUMERICAL IMPLEMENTATION AND CHALLENGES
We here briefly discuss our algorithm, its usage, and the aris-

ing challenges. The pseudocode for the algorithm and its variables
are discussed in the supplementary material. Its implementation
requires the user to make decisions regarding the perceived shape
of the point spread function (PSF), the prior distribution, the usage
of either Poisson (Lucy-Richardson) or Gaussian (ISRA) statistics,
and the stopping criterion. These choices depend primarily on the
spectra considered. The effectiveness of these options is judged by
the speed of convergence and the quality of the recovered spectra.
Here, we discuss the implementation of the algorithm and explain
the choices to be made. In addition, the algorithm requires choices
for the following:

1. The algorithm is only semiconvergent. In other words, after
a certain number of iterations, the algorithm will distort the
original signal and the model deteriorates. The most common
solution is to implement a stopping criterion.
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2. A useful prior distribution is required. In general, the prior
which achieves convergence in the least number of iterations
is the most optimal in the absence of other information.

3. A regularization strategy for the parameter β must be imple-
mented to ensure convergence of the SGM.

The primary inputs into the algorithm consist of the initial val-
ues for the signal in the Signal vector and the data in the Data
vector; the two vectors must be equal in length. Since the initial val-
ues of the Signal vector do not significantly affect the performance,
we initialized them with ones. Other inputs are the vectors Prior
and Peak which represent convolution kernels, i.e., representations
of the Toeplitz matrices A and B to be convolved with the Signal
vector. Signal is iteratively updated until the convergence crite-
ria are satisfied, while the vectors Data, Peak, and Prior remain
unchanged. The update depends on the convolution of the current
Signal with the Peak and Prior vectors. Considering that in this
paper the peak shapes of the present data are unimodal, and the
results do not depend strongly on the peak shape, the shape vector
Peak was set to a symmetric second-order polynomial.

While the relative entropy S between the model and data could
be used as a stopping criterion, this proved challenging to general-
ize since its behavior depends strongly on the prior. Fortunately, the
distribution of residuals as discussed in the deconvolution literature
asserts that, for a meaningful reconstruction, the residuals should
follow a Gaussian distribution centered around zero.26 For example,
the distribution of residuals is shown in Fig. 1(a) for the second-
differences prior, while Fig. S1 depicts the reconstructed mass spec-
trum. Furthermore, Fig. S2 compares the deconvolved mass spectra
obtained by the Lucy-Richardson and the second-difference algo-
rithms. The irregular convergence behavior seen in Fig. 1 for the
second-differences algorithm can be explained as the competition
between the prior (which prefers flat structures) and the likelihood
(which prefers spiked structures) causing very strong local domains
in the parameter space.

Since this distribution satisfies the above-mentioned require-
ments, we decided to utilize residuals and their behavior to mon-
itor the state of the deconvolution process. Our stopping criterion
requires that the difference in the mean of the residual distribution
ε′(i) and the difference in the entropy S′(i) must decrease below
their predefined tolerance thresholds (εTOL and STOL) before reach-
ing the maximum allowed number of iterations (IMAX = 104). In
addition, a constant-sign criterion is implemented to counter

oscillations of the second difference of the entropy S′′ around
zero. After an empirically determined number of oscillations
(SMAX = 4), the strength of the prior is reduced, which accordingly
eliminates such oscillatory behavior. Seeing that the magnitude of
the mean of the residuals ε(i) is determined by each dataset and prior,
it cannot be employed as a universal stopping criterion; instead,
the change ε′(i) should be employed. The respective convergence
behavior of the standard Lucy-Richardson algorithm (B0) and the
second-differences prior (B3) are compared in Fig. 1. We confirmed
that these trends agree qualitatively with the behavior of the entropy
convergence plots.

The difference in entropy S′(i) decrease on approaching local
and global minima. When the difference falls below a predefined
tolerance STOL, the strength of the prior is reduced by scaling the reg-
ularization parameter β by an amount of βΔ < 1, such that β′ = ββΔ
for the next iteration. The attenuation of the prior is used to weaken
the influence of the local minima on the solution and is akin to the
boosting mechanism introduced by Miroslav. Boosting is an ad hoc
sharpening of the solution to move the solution out of the current
local minima, while the prior attenuation is a weakening of the local
minima, but with the same goal.55

Figure 2(b) indicates that the prior guides the algorithm dur-
ing the initial phase of the deconvolution, while the influence of β
is rather significant, but is increasingly suppressed by the boosting
mechanism. We further note that without such a boosting mecha-
nism the Tikhonov regularization prior (B1) would have been per-
manently stranded within the local minimum56 as indicated by the
stepping behavior of the entropy in Fig. 2(a). Most importantly, this
mechanism ensures that all the algorithms converge to a similar
entropy, thereby permitting a quantitative comparison of results as
a function of different priors for a given dataset. This consistency
provides additional reassurance that the selected stopping criterion
is indeed appropriate.

UniDec27 is a specific implementation of the Lucy-Richardson
algorithm to deconvolve the multiplicities of mass-to-charge ratios
to find the underlying zero-charge mass distributions. By contrast,
our approach is to augment both the Lucy-Richardson and the
ISRA algorithms with prior information and regularizers such that
the deconvolution of the mass-to-charge data with the instrument
response function will improve the overall signal-to-noise ratio.
It should be emphasized that the incorporation of a prior is not
beneficial by default. Compared to the standard Lucy-Richardson
algorithm, only the second-differences prior improved the rate of

FIG. 1. A representative residual error
distribution (a) for the second-differences
prior. The difference in the mean of resid-
uals ε′(i) is also shown (b) for this prior
and standard Lucy-Richardson. The prior
reaches the same mean residual differ-
ence as Lucy-Richardson, but in con-
siderably fewer iterations while preserv-
ing the quality of the reconstruction. The
algorithms terminated upon reaching the
difference in the mean of the residual dis-
tribution tolerance εTOL (additional itera-
tions result in overfitting).
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FIG. 2. Comparison of convergence of the entropy for the standard Lucy-Richardson and Tikhonov prior algorithms (a). Furthermore, the evolution of the regularization
parameter β of the second-differences and Tikhonov priors is also shown (b). The influence exerted by these priors in the early phases is rapidly suppressed by the boost
mechanism. For visual clarity, only the first 5000 of a much larger number of iterations are shown. All the algorithms terminated upon reaching the εTOL tolerance.

convergence from 952 to 223 iterations. The Tikhonov regu-
larization prior (B1) yielded the best spectra, avoiding overfit-
ting of spurious small peaks and correctly identifying most of
the physically meaningful peaks, but it did so at the expense of
a markedly longer convergence time than the Lucy-Richardson
algorithm (2024 vs 952 iterations). Both the first-difference (B2)
and third-differences (B4) priors resulted in ill-defined peak
shapes, which was not unexpected since these priors discourage
sharp features (i.e., dependence on signal differences) within the
solution.

In order to better understand the performance of the algo-
rithms, various simulated mass spectra were characterized (see the
supplementary material for more details). Our most appropriate
observation pertains to the effect of baselines. In an ideal sce-
nario, without a baseline, Lucy-Richardson outperforms the second-
differences prior algorithm significantly (343 vs 1576 iterations,
respectively). In the presence of a baseline, however, the perfor-
mance of the Lucy-Richardson algorithm deteriorates dramatically
compared to the second-differences prior (6574 vs 1007 iterations).
Both algorithms suffer from the tendency to overfit the baseline with
a copious number of small, artifact peaks. Nonetheless, the second-
differences prior does so at a considerably reduced rate and termi-
nates earlier due to our novel stopping criterion. Figure S3 illustrates
these observations.

Furthermore, all of the discussed algorithms suffer the limita-
tion of using a peak shape function (PSF) which is independent of
the charge-to-mass ratio. It is known that peak broadening increases
with m/z. Implementing a position-dependent PSF would require
a more sophisticated algorithm which is beyond the scope of this
investigation.

Given that a predefined width is selected for the chosen PSF,
only peaks within the data which are of a comparable width will
be successfully deconvolved. As soon as a peak within the data
is wider than the PSF, the algorithm will attempt to use mul-
tiple kernels during the deconvolution. It is therefore advanta-
geous to select the PSF which is most appropriate for the given
dataset. A common approach is to identify the most relevant mass
range which needs to be deconvolved, and then to determine the
corresponding PSF which best matches the peak widths in that
range.

Peak width and the stopping criterion are also linked. The
stopping criterion is defined in terms of the reconstruction error
which monitors the error distribution averaged over all peaks rather
than individual ones. This implies that peaks which are wider than
the PSF kernel will not be adequately deconvolved because the
algorithm is terminated well before the wider peaks are deconvolved
as further iterations would degrade the already deconvolved peaks.
Figure 3 demonstrates by example the effect of a fixed-width PSF on

FIG. 3. Simulated silicon cluster data (Si2
and Si3) are used to demonstrate the
effect of a fixed-width PSF on the decon-
volution process, where the peak of inter-
est (56 m/z) is successfully deconvolved,
while the peak with wider features (84
m/z) is not. The PSF (inset) was opti-
mized for the peak of interest.

J. Chem. Phys. 151, 244307 (2019); doi: 10.1063/1.5129343 151, 244307-5

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5129343#suppl


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

two spectra of silicon clusters: the peak of interest at 56 m/z is appro-
priately deconvolved, while the peak with wider features at 84 m/z is
not.

Although ion counting was performed, it was not known which
error distribution would be more appropriate for this data since
only the mass average is considered in this analysis. For that reason,
we tested both Poissonian and Gaussian error statistics in the form
of the Lucy-Richardson and the ISRA algorithms, respectively. As
noted by others, and as further shown in Fig. S4 in the supplemen-
tary material, Lucy-Richardson converges significantly faster than
ISRA (223 vs 2530 iterations) while also yielding superior deconvo-
lution results; the ISRA algorithm is more susceptible to introducing
artifactual peaks. Currently, it is not known whether this is related to
the specific stopping criterion used by us or whether this conclusion
applies universally to these algorithms; certainly, the residual distri-
butions appear to be qualitatively similar. Even though the results
of not using priors are shown, these characteristics (superior perfor-
mance of Lucy-Richardson over ISRA) were observed for all of the
priors investigated. Preliminary results indicate that this observation
also applies to single-shot spectra.

IV. RESULTS AND DISCUSSION
We have applied split-gradient deconvolution methods to laser

desorption mass spectrometry time-of-flight data; the experimental
setup has been described in Ref. 44. A representative example of the
spectra obtained when investigating a BTP fragmentation pathway
is shown in Fig. 4; both the parent peaks of the BTP thermometer
(m/z 353) and DHB matrix ions (m/z 154) are pronounced. The BTP
fragmentation signature is known to primarily consist of the benzyl
(m/z 91) and triphenylphosphine (m/z 262) ions.37 However, since
femtosecond pulses are used, the fragmentation is reduced such that
these peaks are barely visible.44 The soft nature of desorption with
ultrashort pulses has been discussed elsewhere.36,37,44

The mass resolution is significantly improved using an appro-
priate deconvolution method, as shown in Fig. 5, for the standard
Lucy-Richardson algorithm and a modification thereof by apply-
ing the second-difference prior. The deconvolved signal facilitated

a more quantitative conclusion regarding the fragmentation path-
way as it resulted in an improved resolution and, therefore, enabled
more peak-to-peak ratios to be defined. Of the five priors investi-
gated (B0 to B4), only the standard Lucy-Richardson algorithm (B0)
and a second-differences prior (B3) are discussed in this section
since these two methods produced the best results. Both of these
methods deconvolved the data into the underlying signals while
the peak amplitude ratios are evidently preserved. However, the
second-differences prior performed better than Lucy-Richardson in
deconvolving the underlying peak structures such as dehydroxylated
DHB. This superior performance was observed for the majority of
peaks, especially for those having relatively small amplitudes such
as triphenylphosphine. For both of these methods, the recovered
spectra (see Fig. 6) overlapped the raw data well, which signifies an
appropriate deconvolution since the deconvolved signal is capable
of recovering the data.

The Lucy-Richardson algorithm is semiconvergent after an ini-
tial deconvolution period, which suggests that further iterations
will not substantially improve the likelihood while continuing to
increase the sparsity of the solution. By adding the prior, the
initial deconvolution is guided closer to an appropriate solution
which accelerates the convergence and, therefore, also decreases the
number of iterations that can introduce sparsity, thus preserving
the peak amplitudes ratios. As an illustrative example, Fig. S5 (see
supplementary material) shows two histograms comparing the
respective preservation of the peak amplitude ratios, defined as the
relative difference between the signal and data. Even though these
two distributions have similar centroids, the distribution of the
prior method is skewed toward the lower-end, thereby indicating
the better relative peak amplitude preservation. Subsequent studies
will investigate whether the isotopic distributions are equally well
preserved.

Due to the minimal fragmentation of BTP, we will primarily
discuss the DHB fragments. Our immediate goal was to enhance
confidence in our methods for accurately quantifying ion fragmenta-
tion. However, given the low mass resolution (∼200), it was difficult
to succeed in doing this before the deconvolution. For example,
examining the region following the DHB parent ion, the isotopic

FIG. 4. Representative spectrum after
averaging several single-shot spectra.
Although the parent peaks of the BTP
thermometer (m/z 353) and the DHB
matrix (m/z 154) ions stand out, the ben-
zyl (F1, m/z 91) and triphenylphosphine
(F2, m/z 262) ions are barely visible.
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FIG. 5. Comparison spectra of DHB (m/z
154, right) and its dehydroxylated frag-
ment (m/z 137, left) after deconvolution
was performed using the standard Lucy-
Richardson algorithm (B0) and the Lucy-
Richardson algorithm with the second-
differences prior (B3).

FIG. 6. Comparison spectra of the ben-
zyl fragment (m/z = 91, fragment F1,
left), as well the triphenylphosphine frag-
ment (m/z = 261, fragment F2, right) ion
after deconvolution was performed using
the Lucy-Richardson algorithm with the
second-differences prior.

distribution thereof can be approximated. Nevertheless, it is hard
to make a realistic statement regarding the hydrogen loss peaks
(m/z 136 and 153) other than inferring their possible existence.
Likewise, very few conclusions can be drawn regarding the dehy-
droxylated DHB fragment (m/z 137) other than to determine its
peak intensity ratio relative to the parent. At the minimum, the
deconvolution appears to be successful in that each peak in Fig. 5
is separated by single atomic mass units. The hydrogen loss is sup-
ported by the H+ peak that is visible in Fig. 4, which suggests that
a fast ejection of neutral hydrogen, followed by an ionization step,
is probably the responsible pathway.57–60 While similar pathways
have been reported in previous studies when using ultrashort pulses,
they could not be corroborated for these measurements before the
deconvolution.

The base peak in Fig. 4 resembles the intact BTP cation
(m/z = 353, parent M), which is rationalized by the matrix-assisted
desorption of the preformed cation from the solid state. It is note-
worthy that the BTP fragmented only marginally, as only the peaks
associated with the benzyl (m/z = 91, fragment F1) and triph-
enylphosphine (m/z = 261, fragment F2) radicals were observed.
Unsurprisingly, these two fragment ions are characteristic of the
intact cation, which is formed by unimolecular decomposition due
to a homolytic cleavage.33,34 Even though the relative intensities of
both the benzyl (∼1%) and triphenylphosphine (∼2%) ions are very
low, the data did suggest their presence. However, when comparing
the deconvolved signal to the data, Fig. 6 shows that deconvolution
enabled an enhanced peak identification because of this increase in
the mass resolution (∼500 at m/z 154). It is important to recognize

that this improvement is comparable to that offered using delayed
ion extraction.39,40

It was possible to recognize the benzyl fragment before decon-
volution, but the enhanced mass resolution enabled its protonated
species to also be identified. Mass separation suggests that the two
other adjacent peaks (m/z = 92 and 93) are associated with one
another, but not with the benzyl fragment. Similarly, only after the
deconvolution, it was possible to interpret the mass signature of the
triphenylphosphine fragment. It is imperative to highlight that the
intensity ratio of the protonated species to that of the radical ion is
larger than one. A study on the mass spectral behavior of alkyltriph-
enylphosphonium salts demonstrated that this ratio could be con-
sidered as an indicator of the cation internal energy distribution.32

Later studies on BTP reiterated this observation.33 In addition, the
characteristic ion (m/z = 167) associated with thermal degrada-
tion of BTP was not observed.33 Combined with the finding that
no other fragments have been observed, these observations reaffirm
the hypothesis that minimal energy was transferred from the DHB
matrix to the BTP thermometer ions.37,44

V. CONCLUSIONS
We have demonstrated the benefits and advantages of decon-

volving low-resolution time-of-flight data by using the well-
established Poisson-based Lucy-Richardson algorithm both with
and without Bayesian priors. Different priors were applied so as
to extract a more meaningful signal from the experimental data.
For the data investigated in this analysis, it was shown that the
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Gaussian prior based on the second-differences of the signal out-
performs the standard Lucy-Richardson algorithm, as evidenced by
faster convergence and the preservation of a larger fraction of the
peak amplitudes ratios. A novel stopping criterion that monitors
the difference in the mean of the residuals was included which, in
combination with a boosting mechanism, ensures that the algorithm
does not get stuck in a local minimum and that all methods reach
the same result. The Gaussian-based Image Space Reconstruction
algorithm was also studied, as it was not known originally whether
Gaussian statistics might be more appropriate for the experimen-
tal test dataset. We can confirm that, as noted previously by others,
Lucy-Richardson converges more rapidly and is also less prone to
overfitting. For all investigated methods, the improved mass resolu-
tion of the deconvolved signal allowed a more accurate statement to
be made regarding fragmentation of both the 2,5-dihydroxybenzoic
acid (DHB) matrix, as well as the benzyltriphenylphosphonium
(BTP) thermometer ion, following femtosecond ultraviolet laser des-
orption. Further studies will extend the framework introduced in
this work to assist in the interpretation of MALDI shot-to-shot
phenomena.

SUPPLEMENTARY MATERIAL

See the supplementary material for a more complete account of
the underlying mathematical and computational issues summarized
in the main text.
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