152 research outputs found
Laboratory Characterization and Influence of Mineralogy and Grading on the Performance of Treated and Untreated Granular Materials Used as Surface Pavements in Unpaved Road
This paper presents the results of a laboratory study on the influence of grading and granular mineralogy sources (granitic gneiss, basalt and limestone) on the performance of treated and untreated granular materials used as surface pavements in unpaved roads. Results of bearing capacity, resilient modulus and compressive strength tests are discussed. Natural brine, calcium chloride, cement and a polymer emulsion treated samples were tested and compared to untreated samples. The combinations of product, mineralogy and grading showing great performance are finally pointed out
Directed transport in a classical lattice with a high-frequency driving
We analyze the dynamics of a classical particle in a spatially periodic
potential under the influence of a periodic in time uniform force. It was shown
in [S.Flach, O.Yevtushenko, Y. Zolotaryuk, Phys. Rev. Lett. 84, 2358 (2000)]
that despite zero average force, directed transport is possible in the system.
Asymptotic description of this phenomenon for the case of slow driving was
developed in [X. Leoncini, A. Neishtadt, A. Vasiliev, Phys. Rev. E 79, 026213
(2009)]. Here we consider the case of fast driving using canonical perturbation
theory. An asymptotic formula is derived for the average drift velocity as a
function of the system parameters and the driving law. We show that directed
transport arises in an effective Hamiltonian that does not possess chaotic
dynamics, thereby clarifying the relation between chaos and transport in the
system. Sufficient conditions for transport are derived.Comment: 5 page
A Quasi-Classical Model of Intermediate Velocity Particle Production in Asymmetric Heavy Ion Reactions
The particle emission at intermediate velocities in mass asymmetric reactions
is studied within the framework of classical molecular dynamics. Two reactions
in the Fermi energy domain were modelized, Ni+C and Ni+Au at 34.5
MeV/nucleon. The availability of microscopic correlations at all times allowed
a detailed study of the fragment formation process. Special attention was paid
to the physical origin of fragments and emission timescales, which allowed us
to disentangle the different processes involved in the mid-rapidity particle
production. Consequently, a clear distinction between a prompt pre- equilibrium
emission and a delayed aligned asymmetric breakup of the heavier partner of the
reaction was achieved.Comment: 8 pages, 7 figures. Final version: figures were redesigned, and a new
section discussing the role of Coulomb in IMF production was include
Le Forum, Vol. 42 No. 4
https://digitalcommons.library.umaine.edu/francoamericain_forum/1097/thumbnail.jp
Source size scaling of fragment production in projectile breakup
Fragment production has been studied as a function of the source mass and
excitation energy in peripheral collisions of Cl+Au at 43
MeV/nucleon and Ge+Ti at 35 MeV/nucleon. The results are
compared to the Au+Au data at 600 MeV/nucleon obtained by the ALADIN
collaboration. A mass scaling, by 35 to 190, strongly
correlated to excitation energy per nucleon, is presented, suggesting a thermal
fragment production mechanism. Comparisons to a standard sequential decay model
and the lattice-gas model are made. Fragment emission from a hot, rotating
source is unable to reproduce the experimental source size scaling.Comment: 13 pages LaTeX file, including 3 postscript figures (in .tar.gz
fornmat), accepted in Phys. Rev. C . Also available at
http://thomson.phy.ulaval.ca/ions_lourds/gil-en.htm
Blue light affects emotional processing in the hypothalamus in Seasonal Affective Disorder
peer reviewe
A chemical survey of exoplanets with ARIEL
Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae
We systematically surveyed period variations of superhumps in SU UMa-type
dwarf novae based on newly obtained data and past publications. In many
systems, the evolution of superhump period are found to be composed of three
distinct stages: early evolutionary stage with a longer superhump period,
middle stage with systematically varying periods, final stage with a shorter,
stable superhump period. During the middle stage, many systems with superhump
periods less than 0.08 d show positive period derivatives. Contrary to the
earlier claim, we found no clear evidence for variation of period derivatives
between superoutburst of the same object. We present an interpretation that the
lengthening of the superhump period is a result of outward propagation of the
eccentricity wave and is limited by the radius near the tidal truncation. We
interpret that late stage superhumps are rejuvenized excitation of 3:1
resonance when the superhumps in the outer disk is effectively quenched. Many
of WZ Sge-type dwarf novae showed long-enduring superhumps during the
post-superoutburst stage having periods longer than those during the main
superoutburst. The period derivatives in WZ Sge-type dwarf novae are found to
be strongly correlated with the fractional superhump excess, or consequently,
mass ratio. WZ Sge-type dwarf novae with a long-lasting rebrightening or with
multiple rebrightenings tend to have smaller period derivatives and are
excellent candidate for the systems around or after the period minimum of
evolution of cataclysmic variables (abridged).Comment: 239 pages, 225 figures, PASJ accepte
Integrin/Fak/Src-mediated regulation of cell survival and anoikis in human intestinal epithelial crypt cells: selective engagement and roles of PI3-K isoform complexes
In human intestinal epithelial crypt (HIEC) cells, the PI3-K/Akt-1 pathway is crucial for the promotion of cell survival and suppression of anoikis. Class I PI3-K consists of a complex formed by a catalytic (C) and regulatory (R) subunit. Three R (p85α, β, and p55γ) and four C (p110α, β, γ and δ) isoforms are known. Herein, we analyzed the expression of PI3-K isoforms in HIEC cells and determined their roles in cell survival, as well as in the β1 integrin/Fak/Src-mediated suppression of anoikis. We report that: (1) the predominant PI3-K complexes expressed by HIEC cells are p110α/p85β and p110α/p55γ; (2) the inhibition and/or siRNA-mediated expression silencing of p110α, but not that of p110β, γ or δ, results in Akt-1 down-activation and consequent apoptosis; (3) the expression silencing of p85β or p55γ, but not that of p85α, likewise induces Akt-1 down-activation and apoptosis; however, the impact of a loss of p55γ on both Akt-1 activation and cell survival is significantly greater than that from the loss of p85β; and (4) both the p110α/p85β and p110α/p55γ complexes are engaged by β1 integrin/Fak/Src signaling; however, the engagement of p110α/p85β is primarily Src-dependent, whereas that of p110α/p55γ is primarily Fak-dependent (but Src-independent). Hence, HIEC cells selectively express PI3-K isoform complexes, translating into distinct roles in Akt-1 activation and cell survival, as well as in a selective engagement by Fak and/or Src within the context of β1 integrin/Fak/Src-mediated suppression of anoikis
- …