330 research outputs found

    Secretagogues Modulate the Calcium Concentration in the Endoplasmic Reticulum of Insulin-secreting Cells STUDIES IN AEQUORIN-EXPRESSING INTACT AND PERMEABILIZED INS-1 CELLS

    Get PDF
    The precise regulation of the Ca2+ concentration in the endoplasmic reticulum ([Ca2+]er) is important for protein processing and signal transduction. In the pancreatic beta-cell, dysregulation of [Ca2+]er may cause impaired insulin secretion. The Ca2+-sensitive photoprotein aequorin mutated to lower its Ca2+ affinity was stably expressed in the endoplasmic reticulum (ER) of rat insulinoma INS-1 cells. The steady state [Ca2+]er was 267 +/- 9 microM. Both the Ca2+-ATPase inhibitor cyclopiazonic acid and 4-chloro-m-cresol, an activator of ryanodine receptors, caused an almost complete emptying of ER Ca2+. The inositol 1,4,5-trisphosphate generating agonists, carbachol, and ATP, reduced [Ca2+]er by 20-25%. Insulin secretagogues that raise cytosolic [Ca2+] by membrane depolarization increased [Ca2+]er in the potency order K+ >> glucose > leucine, paralleling their actions in the cytosolic compartment. Glucose, which augmented [Ca2+]er by about 25%, potentiated the Ca2+-mobilizing effect of carbachol, explaining the corresponding observation in cytosolic [Ca2+]. The filling of ER Ca2+ by glucose is not directly mediated by ATP production as shown by the continuous monitoring of cytosolic ATP in luciferase expressing cells. Both glucose and K+ increase [Ca2+]er, but only the former generated whereas the latter consumed ATP. Nonetheless, drastic lowering of cellular ATP with a mitochondrial uncoupler resulted in a marked decrease in [Ca2+]er, emphasizing the requirement for mitochondrially derived ATP above a critical threshold concentration. Using alpha-toxin permeabilized cells in the presence of ATP, glucose 6-phosphate did not change [Ca2+]er, invalidating the hypothesis that glucose acts through this metabolite. Therefore, insulin secretagogues that primarily stimulate Ca2+ influx, elevate [Ca2+]er to ensure beta-cell homeostasis

    Anti-endomysial antibody may predict a second endoscopy in coeliac-suspected patients with false negative index duodenal biopsies

    Get PDF
    Background/aims: A subset of coeliac-suspected patients requires 2 Oesophagogastroduodenoscopies (OGDs) to achieve histological confirmation. Their index OGD would fail to reach diagnosis despite 4 duodenal biopsies suggested by guidelines. We compared this subgroup of patients with other coeliac patients requiring 1 endoscopy and recognize any predictors to identify the former group.Methods: Coeliac-suspected patients at our department underwent an OGD. Clinical, serological and histological data were retrieved from medical notes. Group 1 comprised patients who achieved diagnosis with 1 OGD. Group 2 required 2 OGDs.Results: 178 patients underwent an OGD (mean age 47 years; 73.6% females). 12 patients (6.7%) required 2 OGDs. Both groups had the same mean number of duodenal biopsies at their index endoscopy (4.6 vs 4.5, P=0.76). In Group 2, the number of biopsies was higher at the second endoscopy (6.4 vs 4.5, P=0.028). Group 2 showed a negative or lower positivity for anti-EMA (P=0.039) and a lower anti-tTG IgA level (P=0.06) than Group 1.Conclusion: Anti-EMA seronegativity or low positivity in coeliac-suspected patients indicates the need for more duodenal biopsies to achieve diagnosis and avoiding subsequent OGDs. This finding makes anti-EMA testing crucial in coeliac diagnostics.peer-reviewe

    Try, try again: Lessons learned from success and failure in participatory modeling

    Get PDF
    Participatory Modeling (PM) is becoming increasingly common in environmental planning and conservation, due in part to advances in cyberinfrastructure as well as to greater recognition of the importance of engaging a diverse array of stakeholders in decision making. We provide lessons learned, based on over 200 years of the authors' cumulative and diverse experience, about PM processes. These include successful and, perhaps more importantly, not-so-successful trials. Our collective interdisciplinary background has supported the development, testing, and evaluation of a rich range of collaborative modeling approaches. We share here what we have learned as a community of participatory modelers, within three categories of reflection: a) lessons learned about participatory modelers; b) lessons learned about the context of collaboration; and c) lessons learned about the PM process. First, successful PM teams encompass a variety of skills beyond modeling expertise. Skills include: effective relationship-building, openness to learn from local experts, awareness of personal motivations and biases, and ability to translate discussions into models and to assess success. Second, the context for collaboration necessitates a culturally appropriate process for knowledge generation and use, for involvement of community co-leads, and for understanding group power dynamics that might influence how people from different backgrounds interact. Finally, knowing when to use PM and when not to, managing expectations, and effectively and equitably addressing conflicts is essential. Managing the participation process in PM is as important as managing the model building process. We recommend that PM teams consider what skills are present within a team, while ensuring inclusive creative space for collaborative exploration and learning supported by simple yet relevant models. With a realistic view of what it entails, PM can be a powerful approach that builds collective knowledge and social capital, thus helping communities to take charge of their future and address complex social and environmental problems

    Quantifying uncertainties of permafrost carbon–climate feedbacks

    Get PDF
    The land surface models JULES (Joint UK Land Environment Simulator, two versions) and ORCHIDEE-MICT (Organizing Carbon and Hydrology in Dynamic Ecosystems), each with a revised representation of permafrost carbon, were coupled to the Integrated Model Of Global Effects of climatic aNomalies (IMOGEN) intermediate-complexity climate and ocean carbon uptake model. IMOGEN calculates atmospheric carbon dioxide (CO2) and local monthly surface climate for a given emission scenario with the land–atmosphere CO2 flux exchange from either JULES or ORCHIDEE-MICT. These simulations include feedbacks associated with permafrost carbon changes in a warming world. Both IMOGEN–JULES and IMOGEN–ORCHIDEE-MICT were forced by historical and three alternative future-CO2-emission scenarios. Those simulations were performed for different climate sensitivities and regional climate change patterns based on 22 different Earth system models (ESMs) used for CMIP3 (phase 3 of the Coupled Model Intercomparison Project), allowing us to explore climate uncertainties in the context of permafrost carbon–climate feedbacks. Three future emission scenarios consistent with three representative concentration pathways were used: RCP2.6, RCP4.5 and RCP8.5. Paired simulations with and without frozen carbon processes were required to quantify the impact of the permafrost carbon feedback on climate change. The additional warming from the permafrost carbon feedback is between 0.2 and 12 % of the change in the global mean temperature (ΔT) by the year 2100 and 0.5 and 17 % of ΔT by 2300, with these ranges reflecting differences in land surface models, climate models and emissions pathway. As a percentage of ΔT, the permafrost carbon feedback has a greater impact on the low-emissions scenario (RCP2.6) than on the higher-emissions scenarios, suggesting that permafrost carbon should be taken into account when evaluating scenarios of heavy mitigation and stabilization. Structural differences between the land surface models (particularly the representation of the soil carbon decomposition) are found to be a larger source of uncertainties than differences in the climate response. Inertia in the permafrost carbon system means that the permafrost carbon response depends on the temporal trajectory of warming as well as the absolute amount of warming. We propose a new policy-relevant metric – the frozen carbon residence time (FCRt) in years – that can be derived from these complex land surface models and used to quantify the permafrost carbon response given any pathway of global temperature change

    Workforce and Professional Education

    Get PDF
    Given that the workforce constitutes a principal resource of primary care, appraisal of models of care requires thorough investigation of the health workforce in all Models of Child Health Appraised (MOCHA) countries. This chapter explores this in terms of workforce composition, remuneration, qualifications and training in relation to the needs of children and young people. We have focused on two principal disciplines of primary care; medicine and nursing, with a specific focus on training and skills to care for children in primary care, particularly those with complex care needs, adolescents and vulnerable groups. We found significant disparities in workforce provision and remuneration, in training curricula and in resultant skills of physicians and nurses in European Union and European Economic Area Countries. A lack of overarching standards and recognition of some of the specific needs of children reflected in training of physicians and nurses may lead to suboptimal care for children. There are, of course, many other professions that also contribute to primary care services for children, some of which are discussed in Chapter 15, but we have not had resources to study these to the same detail

    The relevance of non-human primate and rodent malaria models for humans

    Get PDF
    At the 2010 Keystone Symposium on "Malaria: new approaches to understanding Host-Parasite interactions", an extra scientific session to discuss animal models in malaria research was convened at the request of participants. This was prompted by the concern of investigators that skepticism in the malaria community about the use and relevance of animal models, particularly rodent models of severe malaria, has impacted on funding decisions and publication of research using animal models. Several speakers took the opportunity to demonstrate the similarities between findings in rodent models and human severe disease, as well as points of difference. The variety of malaria presentations in the different experimental models parallels the wide diversity of human malaria disease and, therefore, might be viewed as a strength. Many of the key features of human malaria can be replicated in a variety of nonhuman primate models, which are very under-utilized. The importance of animal models in the discovery of new anti-malarial drugs was emphasized. The major conclusions of the session were that experimental and human studies should be more closely linked so that they inform each other, and that there should be wider access to relevant clinical material

    Learning Outcomes Assessment A Practitioner\u27s Handbook

    Get PDF
    Ontario’s colleges and universities have made strides in developing learning outcomes, yet effective assessment remains a challenge. Learning Outcomes Assessment A Practitioner\u27s Handbook is a step-by-step resource to help faculty, staff, academic leaders and educational developers design, review and assess program-level learning outcomes. The handbook explores the theory, principles, reasons for and methods behind developing program-level learning outcomes; emerging developments in assessment; and tips and techniques to build institutional culture, increase faculty involvement and examine curriculum-embedded assessment. It also includes definitions, examples, case studies and recommendations that can be tailored to specific institutional cultures.https://scholar.uwindsor.ca/ctlreports/1005/thumbnail.jp

    Abcc5 Knockout Mice Have Lower Fat Mass and Increased Levels of Circulating GLP-1.

    Get PDF
    OBJECTIVE: A previous genome-wide association study linked overexpression of an ATP-binding cassette transporter, ABCC5, in humans with a susceptibility to developing type 2 diabetes with age. Specifically, ABCC5 gene overexpression was shown to be strongly associated with increased visceral fat mass and reduced peripheral insulin sensitivity. Currently, the role of ABCC5 in diabetes and obesity is unknown. This study reports the metabolic phenotyping of a global Abcc5 knockout mouse. METHODS: A global Abcc5-/- mouse was generated by CRISPR/Cas9. Fat mass was determined by weekly EchoMRI and fat pads were dissected and weighed at week 18. Glucose homeostasis was ascertained by an oral glucose tolerance test, intraperitoneal glucose tolerance test, and intraperitoneal insulin tolerance test. Energy expenditure and locomotor activity were measured using PhenoMaster cages. Glucagon-like peptide 1 (GLP-1) levels in plasma, primary gut cell cultures, and GLUTag cells were determined by enzyme-linked immunosorbent assay. RESULTS: Abcc5-/- mice had decreased fat mass and increased plasma levels of GLP-1, and they were more insulin sensitive and more active. Recombinant overexpression of ABCC5 protein in GLUTag cells decreased GLP-1 release. CONCLUSIONS: ABCC5 protein expression levels are inversely related to fat mass and appear to play a role in the regulation of GLP-1 secretion from enteroendocrine cells

    Measurements of nitric oxide and ammonia soil fluxes from a wet savanna ecosystem site in West Africa during the DACCIWA field campaign

    Get PDF
    Biogenic fluxes from soil at a local and regional scale are crucial to study air pollution and climate. Here we present field measurements of soil fluxes of nitric oxide (NO) and ammonia (NH3) observed over four different land cover types, i.e. bare soil, grassland, maize field, and forest, at an inland rural site in Benin, West Africa, during the DACCIWA field campaign in June and July 2016. At the regional scale, urbanization and a massive growth in population in West Africa have been causing a strong increase in anthropogenic emissions. Anthropogenic pollutants are transported inland and northward from the megacities located on the coast, where the reaction with biogenic emissions may lead to enhanced ozone production outside urban areas, as well as secondary organic aerosol formation, with detrimental effects on humans, animals, natural vegetation, and crops. We observe NO fluxes up to 48.05 ngNm 2 s 1. NO fluxes averaged over all land cover types are 4:79 5:59 ngNm 2 s 1, and maximum soil emissions of NO are recorded over bare soil. NH3 is dominated by deposition for all land cover types. NH3 fluxes range between 6:59 and 4.96 ngNm 2 s 1. NH3 fluxes averaged over all land cover types are 0:911:27 ngNm 2 s 1, and maximum NH3 deposition is measured over bare soil. The observations show high spatial variability even for the same soil type, same day, and same meteorological conditions. We compare point daytime average measurements of NO emissions recorded during the field campaign with those simulated by GEOS-Chem (Goddard Earth Observing System Chemistry Model) for the same site and find good agreement. In an attempt to quantify NO emissions at the regional and national scale, we also provide a tentative estimate of total NO emissions for the entire country of Benin for the month of July using two distinct methods: upscaling point measurements and using the GEOS-Chem model. The two methods give similar results: 1:170:6 and 1.44 GgN month 1, respectively. Total NH3 deposition estimated by upscaling point measurements for the month of July is 0.21 GgN month1

    Reciprocal feature encoding by cortical excitatory and inhibitory neurons

    Get PDF
    In the cortex, the interplay between excitation and inhibition determines the fidelity of neuronal representations. However, while the receptive fields of excitatory neurons are often fine-tuned to the encoded features, the principles governing the tuning of inhibitory neurons are still elusive. We addressed this problem by recording populations of neurons in the postsubiculum (PoSub), a cortical area where the receptive fields of most excitatory neurons correspond to a specific head-direction (HD). In contrast to PoSub-HD cells, the tuning of fast-spiking (FS) cells, the largest class of cortical inhibitory neurons, was broad and heterogeneous. However, we found that PoSub-FS cell tuning curves were often fine-tuned in the spatial frequency domain, which resulted in various radial symmetries in their HD tuning. In addition, the average frequency spectrum of PoSub-FS cell populations was virtually indistinguishable from that of PoSub-HD cells but different from that of the upstream thalamic HD cells, suggesting that this population cotuning in the frequency domain has a local origin. Two observations corroborated this hypothesis. First, PoSub-FS cell tuning was independent of upstream thalamic inputs. Second, PoSub-FS cell tuning was tightly coupled to PoSub-HD cell activity even during sleep. Together, these findings provide evidence that the resolution of neuronal tuning is an intrinsic property of local cortical networks, shared by both excitatory and inhibitory cell populations. We hypothesize that this reciprocal feature encoding supports two parallel streams of information processing in thalamocortical networks.Canadian Institutes of Health ResearchIsrael Science FoundationAzrieli FoundationEMBO Long-Term Postdoctoral FellowshipSir Henry Wellcome Fellowship (A.J.D.
    corecore