1,327 research outputs found

    Life cycle assessment of a plastic air intake manifold

    Get PDF

    Electrospun Polyaniline-Based Composite Nanofibers: Tuning the Electrical Conductivity by Tailoring the Structure of Thiol-Protected Metal Nanoparticles

    Get PDF
    Composite nanofibers made of a polyaniline-based polymer blend and different thiol-capped metal nanoparticles were prepared using ex situ synthesis and electrospinning technique. The effects of the nanoparticle composition and chemical structure on the electrical properties of the nanocomposites were investigated. This study confirmed that Brust's procedure is an effective method for the synthesis of sub-10 nm silver, gold, and silver-gold alloy nanoparticles protected with different types of thiols. Electron microscopy results demonstrated that electrospinning is a valuable technique for the production of composite nanofibers with similar morphology and revealed that nanofillers are well-dispersed into the polymer matrix. X-ray diffraction tests proved the lack of a significant influence of the nanoparticle chemical structure on the polyaniline chain arrangement. However, the introduction of conductive nanofillers in the polymer matrix influences the charge transport noticeably improving electrical conductivity. The enhancement of electrical properties is mediated by the nanoparticle capping layer structure. The metal nanoparticle core composition is a key parameter, which exerted a significant influence on the conductivity of the nanocomposites. These results prove that the proposed method can be used to tune the electrical properties of nanocomposites

    Thermoplasmonics with Gold Nanoparticles: A New Weapon in Modern Optics and Biomedicine

    Get PDF
    Thermoplasmonics deals with the generation and manipulation of nanoscale heating associated with noble metallic nanoparticles. To this end, gold nanoparticles (AuNPs) are unique nanomaterials with the intrinsic capability to generate a nanoscale confined light‐triggered thermal effect. This phenomenon is produced under the excitation of a suitable light of a wavelength that matches the localized surface plasmonic resonance frequency of AuNPs. Liquid crystals (LCs) and hydrogels are temperature‐sensitive materials that can detect the host AuNPs and their photo‐induced temperature variations. In this perspective, new insight into thermoplasmonics, by describing a series of methodologies for monitoring, detecting, and exploiting the photothermal properties of AuNPs, is offered. From conventional infrared thermography to highly sophisticated temperature‐sensitive materials such as LCs and hydrogels, a new scenario in thermoplasmonic‐based, next generation, photonic components is presented and discussed. Moreover, a new road in thermoplasmonic‐driven biomedical applications, by describing compelling and innovative health technologies such as on‐demand drug‐release and smart face masks with smart nano‐assisted destruction of pathogens, is proposed. The latter represents a new weapon in the fight against COVID‐19

    A new holistic 3D non-invasive analysis of cellular distribution and motility on fibroinalginate microcarriers using light sheet fluorescent microscopy

    Get PDF
    Cell interaction with biomaterials is one of the keystones to developing medical devices for tissue engineering applications. Biomaterials are the scaffolds that give three-dimensional support to the cells, and are vectors that deliver the cells to the injured tissue requiring repair. Features of biomaterials can influence the behaviour of the cells and consequently the efficacy of the tissue-engineered product. The adhesion, distribution and motility of the seeded cells onto the scaffold represent key aspects, and must be evaluated in vitro during the product development, especially when the efficacy of a specific tissue-engineered product depends on viable and functional cell loading. In this work, we propose a non-invasive and non-destructive imaging analysis for investigating motility, viability and distribution of Mesenchymal Stem Cells (MSCs) on silk fibroin-based alginate microcarriers, to test the adhesion capacity of the fibroin coating onto alginate which is known to be unsuitable for cell adhesion. However, in depth characterization of the biomaterial is beyond the scope of this paper. Scaffold-loaded MSCs were stained with Calcein-AM and Ethidium homodimer-1 to detect live and dead cells, respectively, and counterstained with Hoechst to label cell nuclei. Time-lapse Light Sheet Fluorescent Microscopy (LSFM) was then used to produce three dimensional images of the entire cells-loaded fibroin/alginate microcarriers. In order to quantitatively track the cell motility over time, we also developed an open source user friendly software tool called Fluorescent Cell Tracker in Three-Dimensions (F-Tracker3D). Combining LSFM with F-Tracker3D we were able for the first time to assess the distribution and motility of stem cells in a non-invasive, non-destructive, quantitative, and three-dimensional analysis of the entire surface of the cell-loaded scaffold. We therefore propose this imaging technique as an innovative holistic tool for monitoring cell-biomaterial interactions, and as a tool for the design, fabrication and functionalization of a scaffold as a medical device

    Thermoplasmonics with Gold Nanoparticles: A New Weapon in Modern Optics and Biomedicine

    Get PDF
    Thermoplasmonics deals with the generation and manipulation of nanoscale heating associated with noble metallic nanoparticles. To this end, gold nanoparticles (AuNPs) are unique nanomaterials with the intrinsic capability to generate a nanoscale confined light‐triggered thermal effect. This phenomenon is produced under the excitation of a suitable light of a wavelength that matches the localized surface plasmonic resonance frequency of AuNPs. Liquid crystals (LCs) and hydrogels are temperature‐sensitive materials that can detect the host AuNPs and their photo‐induced temperature variations. In this perspective, new insight into thermoplasmonics, by describing a series of methodologies for monitoring, detecting, and exploiting the photothermal properties of AuNPs, is offered. From conventional infrared thermography to highly sophisticated temperature‐sensitive materials such as LCs and hydrogels, a new scenario in thermoplasmonic‐based, next generation, photonic components is presented and discussed. Moreover, a new road in thermoplasmonic‐driven biomedical applications, by describing compelling and innovative health technologies such as on‐demand drug‐release and smart face masks with smart nano‐assisted destruction of pathogens, is proposed. The latter represents a new weapon in the fight against COVID‐19

    In vitro functional models for human liver diseases and drug screening: beyond animal testing

    Get PDF
    Liver is one of the most important and complex organs in the human body, being characterized by a sophisticated microarchitecture and responsible for key physiological functions. Despite its remarkable ability to regenerate, acute liver failure and chronic liver diseases are major causes of morbidity and mortality worldwide. Therefore, understanding the molecular mechanisms underlying such liver disorders is critical for the successful development of novel therapeutics. In this frame, preclinical animal models have been portrayed as the most commonly used tool to address such issues. However, due to significant species differences in liver architecture, regenerative capacity, disease progression, inflammatory markers, metabolism rates, and drug response, animal models cannot fully recapitulate the complexity of human liver metabolism. As a result, translational research to model human liver diseases and drug screening platforms may yield limited results, leading to failure scenarios. To overcome this impasse, over the last decade, 3D human liver in vitro models have been proposed as an alternative to pre-clinical animal models. These systems have been successfully employed for the investigation of the etiology and dynamics of liver diseases, for drug screening, and - more recently - to design patient-tailored therapies, resulting in potentially higher efficacy and reduced costs compared to other methods. Here, we review the most recent advances in this rapidly evolving field with particular attention to organoid cultures, liver-on-a-chip platforms, and engineered scaffold-based approaches

    Chemical synthesis of polyaniline and polythiophene electrodes with excellent performance in supercapacitors

    Get PDF
    The emergence of portable electronics in miniaturized and intelligent devices demands high-performance supercapacitors (SC) and batteries as power sources. For the fabrication of such energy storage devices, conducting polymers (CPs) have significant advantages due to their high theoretical capacitive performance and conductivity. In this work, we developed two CPs including polyaniline and polythiophene through a low-cost chemically synthesized approach and the film-by-spin coating method. The structural and morphological properties of the CPs are analyzed using Fourier-transform infrared spectroscopy (FTIR), contact angle measurement, and scanning electron microscopy (SEM). Based on these CPs, novel pristine polyaniline and polythiophene-based SCs (PASC and PTSC) are developed. The prepared CPs contribute to high electrochemical performances due to their high conductive nature of the electrode and conjugated polymer materials reaction. Hence both electrochemical double-layer formation and pseudocapacitance contributed to the energy-storing performances of the device. Electrochemical impedance spectroscopic analysis (0.1 Hz to 100 kHz) demonstrates faster ionic exchange and high capacitance of the PASC electrode as compared to PTSC in H3PO4 electrolyte. The PASC devices exhibit specific capacitance of 13.22 mF·cm−2 with energy and power densities of 1.175 μW·h·cm−2 and 4.99 μW·cm−2 at a current of 50 μA. Compared to PTSC (specific capacitance 3.30 mF·cm−2) the PASC shows four times higher specific capacitance due to its improved surface, structural and electrical properties. The electrochemical performance reveals the superior SC performance for this type of CP electrode

    Calorimetry Task Force Report

    Get PDF
    In this note we summarize the studies and recommendations of the calorimeter simulation task force (CaloTF). The CaloTF was established in February 2008 in order to understand and reconcile the discrepancies observed between the CMS calorimetry simulation and the test beam data recorded during 2004 and 2006. As the result of studies by the CaloTF a new version of Geant4 was developed and introduced in the CMS detector simulation leading to significanly better agreement with test beam data. Fast and flexible parameterizations describing showering in the calorimeter are introduced both in the Full Simulation (with a Gflash-like approach) and in the Fast Simulation. The CaloTF has developed a strategy to rapidly tune the CMS calorimeter simulation using the first LHC collision data when it becomes available. The improvements delivered by the CaloTF have been implemented in the software release CMSSW 2.1.0

    Notulae to the Italian alien vascular flora: 1

    Get PDF
    In this contribution, new data concerning the Italian distribution of alien vascular flora are presented. It includes new records, exclusions, and confirmations for Italy or for Italian administrative regions for taxa in the genera Agave, Arctotheca, Berberis, Bidens, Cardamine, Catalpa, Cordyline, Cotoneaster, Dichondra, Elaeagnus, Eragrostis, Impatiens, Iris, Koelreuteria, Lamiastrum, Lantana, Ligustrum, Limnophila, Lonicera, Lycianthes, Maclura, Mazus, Paspalum, Pelargonium, Phyllanthus, Pyracantha, Ruellia, Sorghum, Symphyotrichum, Triticum, Tulbaghia and Youngia

    The population of merging compact binaries inferred using gravitational waves through GWTC-3

    Get PDF
    We report on the population properties of 76 compact binary mergers detected with gravitational waves below a false alarm rate of 1 per year through GWTC-3. The catalog contains three classes of binary mergers: BBH, BNS, and NSBH mergers. We infer the BNS merger rate to be between 10 Gpc3yr1\rm{Gpc^{-3} yr^{-1}} and 1700 Gpc3yr1\rm{Gpc^{-3} yr^{-1}} and the NSBH merger rate to be between 7.8 Gpc3yr1\rm{Gpc^{-3}\, yr^{-1}} and 140 Gpc3yr1\rm{Gpc^{-3} yr^{-1}} , assuming a constant rate density versus comoving volume and taking the union of 90% credible intervals for methods used in this work. Accounting for the BBH merger rate to evolve with redshift, we find the BBH merger rate to be between 17.9 Gpc3yr1\rm{Gpc^{-3}\, yr^{-1}} and 44 Gpc3yr1\rm{Gpc^{-3}\, yr^{-1}} at a fiducial redshift (z=0.2). We obtain a broad neutron star mass distribution extending from 1.20.2+0.1M1.2^{+0.1}_{-0.2} M_\odot to 2.00.3+0.3M2.0^{+0.3}_{-0.3} M_\odot. We can confidently identify a rapid decrease in merger rate versus component mass between neutron star-like masses and black-hole-like masses, but there is no evidence that the merger rate increases again before 10 MM_\odot. We also find the BBH mass distribution has localized over- and under-densities relative to a power law distribution. While we continue to find the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above 60M\sim 60 M_\odot. The rate of BBH mergers is observed to increase with redshift at a rate proportional to (1+z)κ(1+z)^{\kappa} with κ=2.91.8+1.7\kappa = 2.9^{+1.7}_{-1.8} for z1z\lesssim 1. Observed black hole spins are small, with half of spin magnitudes below χi0.25\chi_i \simeq 0.25. We observe evidence of negative aligned spins in the population, and an increase in spin magnitude for systems with more unequal mass ratio
    corecore