301 research outputs found

    Forecasting the response of Earth\u27s surface to future climatic and land use changes: A review of methods and research needs

    Get PDF
    In the future, Earth will be warmer, precipitation events will be more extreme, global mean sea level will rise, and many arid and semiarid regions will be drier. Human modifications of landscapes will also occur at an accelerated rate as developed areas increase in size and population density. We now have gridded global forecasts, being continually improved, of the climatic and land use changes (C&LUC) that are likely to occur in the coming decades. However, besides a few exceptions, consensus forecasts do not exist for how these C&LUC will likely impact Earth-surface processes and hazards. In some cases, we have the tools to forecast the geomorphic responses to likely future C&LUC. Fully exploiting these models and utilizing these tools will require close collaboration among Earth-surface scientists and Earth-system modelers. This paper assesses the state-of-the-art tools and data that are being used or could be used to forecast changes in the state of Earth\u27s surface as a result of likely future C&LUC. We also propose strategies for filling key knowledge gaps, emphasizing where additional basic research and/or collaboration across disciplines are necessary. The main body of the paper addresses cross-cutting issues, including the importance of nonlinear/threshold-dominated interactions among topography, vegetation, and sediment transport, as well as the importance of alternate stable states and extreme, rare events for understanding and forecasting Earth-surface response to C&LUC. Five supplements delve into different scales or process zones (global-scale assessments and fluvial, aeolian, glacial/periglacial, and coastal process zones) in detail. © 2015 The Authors. Earth\u27s Future published by Wiley on behalf of the American Geophysical Union

    Theory of a magnetic microscope with nanometer resolution

    Full text link
    We propose a theory for a type of apertureless scanning near field microscopy that is intended to allow the measurement of magnetism on a nanometer length scale. A scanning probe, for example a scanning tunneling microscope (STM) tip, is used to scan a magnetic substrate while a laser is focused on it. The electric field between the tip and substrate is enhanced in such a way that the circular polarization due to the Kerr effect, which is normally of order 0.1% is increased by up to two orders of magnitude for the case of a Ag or W tip and an Fe sample. Apart from this there is a large background of circular polarization which is non-magnetic in origin. This circular polarization is produced by light scattered from the STM tip and substrate. A detailed retarded calculation for this light-in-light-out experiment is presented.Comment: 17 pages, 8 figure

    An Exact Algorithm for Side-Chain Placement in Protein Design

    Get PDF
    Computational protein design aims at constructing novel or improved functions on the structure of a given protein backbone and has important applications in the pharmaceutical and biotechnical industry. The underlying combinatorial side-chain placement problem consists of choosing a side-chain placement for each residue position such that the resulting overall energy is minimum. The choice of the side-chain then also determines the amino acid for this position. Many algorithms for this NP-hard problem have been proposed in the context of homology modeling, which, however, reach their limits when faced with large protein design instances. In this paper, we propose a new exact method for the side-chain placement problem that works well even for large instance sizes as they appear in protein design. Our main contribution is a dedicated branch-and-bound algorithm that combines tight upper and lower bounds resulting from a novel Lagrangian relaxation approach for side-chain placement. Our experimental results show that our method outperforms alternative state-of-the art exact approaches and makes it possible to optimally solve large protein design instances routinely

    Adult attachment style across individuals and role-relationships: Avoidance is relationship-specific, but anxiety shows greater generalizability

    Get PDF
    A generalisability study examined the hypotheses that avoidant attachment, reflecting the representation of others, should be more relationship-specific (vary across relationships more than across individuals), while attachment anxiety, reflecting self-representation, should be more generalisable across a person’s relationships. College students responded to 6-item questionnaire measures of these variables for 5 relationships (mother, father, best same-gender friend, romantic partner or best opposite-gender friend, other close person), on 3 (N = 120) or 2 (N = 77) occasions separated by a few weeks. Results supported the hypotheses, with the person variance component being larger than the relationship-specific component for anxiety, and the opposite happening for avoidance. Anxiety therefore seems not to be as relationship-specific as previous research suggested. Possible reasons for discrepancies between the current and previous studies are discussed

    The Superpartner Spectrum of Gaugino Mediation

    Get PDF
    We compute the superpartner masses in a class of models with gaugino mediation (or no-scale) boundary conditions at a scale between the GUT and Planck scales. These models are compelling because they are simple, solve the supersymmetric flavor and CP problems, satisfy all constraints from colliders and cosmology, and predict the superpartner masses in terms of very few parameters. Our analysis includes the renormalization group evolution of the soft-breaking terms above the GUT scale. We show that the running above the GUT scale is largely model independent and find that a phenomenologically viable spectrum is obtained.Comment: 15 page

    Cold Dark Matter detection in SUSY models at large tan(beta)

    Get PDF
    We study the direct detection rate for SUSY cold dark matter (CDM) predicted by the minimal supersymmetric standard model with universal boundary conditions and large values for tan(beta). The relic abundance of the lightest supersymmetric particle (LSP), assumed to be approximately a bino, is obtained by including its coannihilations with the next-to-lightest supersymmetric particle (NLSP), which is the lightest s-tau. The cosmological constraint on this quantity severely limits the allowed SUSY parameter space, especially in the case the CP-even Higgs has mass of around 114 GeV. We find that for large tan(beta) it is possible to find a subsection of the allowed parameter space, which yields detectable rates in the currently planned experiments.Comment: Changes in text and figure

    Strongly Coupled Grand Unification in Higher Dimensions

    Full text link
    We consider the scenario where all the couplings in the theory are strong at the cut-off scale, in the context of higher dimensional grand unified field theories where the unified gauge symmetry is broken by an orbifold compactification. In this scenario, the non-calculable correction to gauge unification from unknown ultraviolet physics is naturally suppressed by the large volume of the extra dimension, and the threshold correction is dominated by a calculable contribution from Kaluza-Klein towers that gives the values for \sin^2\theta_w and \alpha_s in good agreement with low-energy data. The threshold correction is reliably estimated despite the fact that the theory is strongly coupled at the cut-off scale. A realistic 5d supersymmetric SU(5) model is presented as an example, where rapid d=6 proton decay is avoided by putting the first generation matter in the 5d bulk.Comment: 17 pages, latex, to appear in Phys. Rev.

    Reach of the Fermilab Tevatron for minimal supergravity in the region of large scalar masses

    Full text link
    The reach of the Fermilab Tevatron for supersymmetric matter has been calculated in the framework of the minimal supergravity model in the clean trilepton channel. Previous analyses of this channel were restricted to scalar masses m_0<= 1 TeV. We extend the analysis to large values of scalar masses m_0\sim 3.5 TeV. This includes the compelling hyperbolic branch/focus point (HB/FP) region, where the superpotential \mu parameter becomes small. In this region, assuming a 5\sigma (3\sigma) signal with 10 (25) fb^{-1} of integrated luminosity, the Tevatron reach in the trilepton channel extends up to m_{1/2}\sim 190 (270) GeV independent of \tan\beta . This corresponds to a reach in terms of the gluino mass of m_{\tg}\sim 575 (750) GeV.Comment: 11 page latex file including 6 EPS figures; several typos corrected and references adde

    Dynamical stability of infinite homogeneous self-gravitating systems: application of the Nyquist method

    Full text link
    We complete classical investigations concerning the dynamical stability of an infinite homogeneous gaseous medium described by the Euler-Poisson system or an infinite homogeneous stellar system described by the Vlasov-Poisson system (Jeans problem). To determine the stability of an infinite homogeneous stellar system with respect to a perturbation of wavenumber k, we apply the Nyquist method. We first consider the case of single-humped distributions and show that, for infinite homogeneous systems, the onset of instability is the same in a stellar system and in the corresponding barotropic gas, contrary to the case of inhomogeneous systems. We show that this result is true for any symmetric single-humped velocity distribution, not only for the Maxwellian. If we specialize on isothermal and polytropic distributions, analytical expressions for the growth rate, damping rate and pulsation period of the perturbation can be given. Then, we consider the Vlasov stability of symmetric and asymmetric double-humped distributions (two-stream stellar systems) and determine the stability diagrams depending on the degree of asymmetry. We compare these results with the Euler stability of two self-gravitating gaseous streams. Finally, we determine the corresponding stability diagrams in the case of plasmas and compare the results with self-gravitating systems
    • 

    corecore