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Proteins

key players in virtually all biological processes

function mostly determined by its 3D structure

sequence of amino acids
(=residues) on backbone

each amino acid has �exible
side-chain
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The Side-Chain Placement Problem

Side-Chain Placement (SCP)

Given a �xed backbone, place the amino acid side-chains on the
backbone in the energetically most favorable conformation.
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Discrete Search Space

The side-chain conformation of a residue is discretized into a
�nite number of states.

Each rotamer represents a set of similar, statistically preferred,
side-chain conformations

Backbone-(in)dependent rotamer library (Dunbrack et al.)

(C. Kingsford)

⇒ Combinatorial search problem!
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Energy Function

Quality of rotamer assignment by energy function:

Singleton scores:

� interaction between backbone and chosen rotamer

� intrinsic energy of rotamer

Pairwise scores:

� van der Waals

� electrostatic

� hydrogen bonding

� ...

Goal: Find minimum energy solution!
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Graph-Theoretic Formulation

Represent protein with k residues by k-partite graph G = (V ,E ):

part Vi for each residue i

node v ∈ Vi for each candidate rotamer of residue i

edge uv denotes interaction between u and v

node costs cv , v ∈ V = self-energy of rotamer v

edge costs cuv , uv ∈ E = interaction energy of u and v

S. Canzar An Exact Algorithm for Side-Chain Placement in Protein Design 6



Graph-Theoretic Formulation

Represent protein with k residues by k-partite graph G = (V ,E ):

part Vi for each residue i

node v ∈ Vi for each candidate rotamer of residue i

edge uv denotes interaction between u and v

node costs cv , v ∈ V = self-energy of rotamer v

edge costs cuv , uv ∈ E = interaction energy of u and v

u

v

S. Canzar An Exact Algorithm for Side-Chain Placement in Protein Design 6



Graph-Theoretic Formulation

Represent protein with k residues by k-partite graph G = (V ,E ):

part Vi for each residue i

node v ∈ Vi for each candidate rotamer of residue i

edge uv denotes interaction between u and v

node costs cv , v ∈ V = self-energy of rotamer v

edge costs cuv , uv ∈ E = interaction energy of u and v

u

v

S. Canzar An Exact Algorithm for Side-Chain Placement in Protein Design 6



Graph-Theoretic Formulation

Represent protein with k residues by k-partite graph G = (V ,E ):

part Vi for each residue i

node v ∈ Vi for each candidate rotamer of residue i

edge uv denotes interaction between u and v

node costs cv , v ∈ V = self-energy of rotamer v

edge costs cuv , uv ∈ E = interaction energy of u and v

cu

cv

S. Canzar An Exact Algorithm for Side-Chain Placement in Protein Design 6



Graph-Theoretic Formulation

Represent protein with k residues by k-partite graph G = (V ,E ):

part Vi for each residue i

node v ∈ Vi for each candidate rotamer of residue i

edge uv denotes interaction between u and v

node costs cv , v ∈ V = self-energy of rotamer v

edge costs cuv , uv ∈ E = interaction energy of u and v

cu

cv

cuv

S. Canzar An Exact Algorithm for Side-Chain Placement in Protein Design 6



Problem SCP

Side-Chain Placement (SCP)

Given a k-partite graph G = (V ,E ), V = V1,∪ · · · ∪ Vk , with node
costs cv , v ∈ V , and edge costs cuv , uv ∈ E , determine an
assignment a : [k] 7→ V with a(i) ∈ Vi , such that cost

k∑
i=1

ca(i) +
k−1∑
i=1

k∑
j=i+1

ca(i)a(j)

of induced subgraph is minimum.

NP-hard [Pierce, Winfree, 2002]

inapproximable [Chazelle et al., 2004]
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Previous Work

Heuristic:

Simulated Annealing

Monte Carlo

Belief Propagation

Less accurate with with increasing problem size! [Voigt et al. 2000]

Exact:

Dead end elimination + A∗

Branch and Bound

Tree decomposition

Integer linear programming
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Overview of the Approach

exact approach

based on ILP formulation by [Althaus et al.], [Kingsford et al.]

Branch & Bound framework

Lagrangian relaxation:

� lower bounds by shortest path computation

� Lagrangian dual: Subgradient Optimization

� primal feasible solutions

initial primal bound by randomized local search
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An ILP formulation
Variables:

xu ∈ {0, 1}, u ∈ Vi , indicates wheter a(i) = u.

yuv ∈ {0, 1}: edge uv is contained in induced subgraph

Constraints: (Let r(v) = i i� v ∈ Vi )

Pick one rotamer per residue:∑
v∈Vi

xv = 1 ∀i ∈ [k]

Select induced edges:∑
u∈Vi

yuv = xv ∀v ∈ V , i 6= r(v)
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Lagrangian Relaxation

min
∑
v∈V

cvxv +
∑
uv∈E

cuvyuv

+
∑
v∈V

∑
i>r(v)+1

λiv · (xv −
∑
u∈Vi

yuv )

s.t.
∑
v∈Vi

xv = 1 ∀i ∈ [k]

∑
u∈Vi

yuv = xv ∀v ∈ V , i 6= r(v)

xv , yuv ∈ {0, 1} ∀v ∈ V , uv ∈ E
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dualize∑
u∈Vi

yuv = xv ∀v ∈ V , i > r(v) + 1

xv , yuv ∈ {0, 1} ∀v ∈ V , uv ∈ E
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Lagrangian Subproblem

∑
v∈Vi

xv = 1 ∀i ∈ [k]

∑
u∈Vi

yuv = xv ∀v ∈ V , i = r(v)− 1

∑
u∈Vi

yuv = xv ∀v ∈ V , i = r(v) + 1

v1

v2

v3 v4
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Solving the Lagrangian Subproblem

minimize
∑
v∈V

(cv +
∑

i>r(v)+1

λiv )xv +
∑
uv∈E

r(u)<r(v)

(cuv − λr(v)u )yuv

Consider the pro�t δ of a node v :

δ(v) = (cv +
∑

i>r(v)+1

λiv ) +

r(v)−2∑
i=1

min
u∈Vi

(cuv − λr(v)u )

Then the score of a feasible path p = (v1, v2, . . . , vk) is:

k∑
i=1

δ(vi ) +
k−1∑
i=1

cvivi+1

S. Canzar An Exact Algorithm for Side-Chain Placement in Protein Design 13



Solving the Lagrangian Subproblem

minimize
∑
v∈V

(cv +
∑

i>r(v)+1

λiv )xv +
∑
uv∈E

r(u)<r(v)

(cuv − λr(v)u )yuv

Consider the pro�t δ of a node v :

δ(v) = (cv +
∑

i>r(v)+1

λiv ) +

r(v)−2∑
i=1

min
u∈Vi

(cuv − λr(v)u )

Then the score of a feasible path p = (v1, v2, . . . , vk) is:

k∑
i=1

δ(vi ) +
k−1∑
i=1

cvivi+1

S. Canzar An Exact Algorithm for Side-Chain Placement in Protein Design 13



Lagrangian Bound by Shortest Path

δ(v1)

δ(v2)

δ(v3) δ(v4)
cv

1v
2 cv2v3

cv3v4

⇒ Shortest path in time linear in the number of edges!
⇒ Optimal solution in time O(|V |2)
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Experimental Setting

C++, LEDA, BALL

compare to CPLEX [Kingsford et al.]

� DEE, TreePack, R3 do not allow multiple candidate amino acids

� treewidth ≈ 10− 20 for small instances

� reduced instances too large

2.26 GHz Intel Quad Core processors, 4 GB RAM, 64 bit Linux

time limit 12 hours, memory limit 16 GB

suboptimal rotamers eliminated in preprocessing

2 di�erent benchmark sets
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Experimental Results

Protein design instances from Yanover et al.

97 proteins, 40-180 �exible residue positions

at each position all 20 amino acids allowed

Rosetta energy function

Instance Lagrangian B&B CPLEX
Name #res #rot N H time/s time/s S
1brf 44 3524 9 4 293.97 469.87 1.6
1bx7 25 1048 1 0 0.54 5.77 10.7
1d3b 66 5732 1 0 530.37 9,577.68 18.1
1en2 59 2689 1 0 19.41 39.94 2.1
1ezg 58 1653 2 1 185.11 441.23 2.4
1g6x 51 3190 1 0 23.96 160.64 6.7
1gcq 65 5442 4 2 903.82 5,270.08 9.8
1i07 52 3186 4 1 187.45 166.20 0.9
1kth 49 3330 18 4 798.57 642.42 0.8
1rb9 43 3307 7 2 127.93 9,535.72 74.5
1sem 54 4348 192 8 5,020.55 6,470.37 1.3
4rxn 45 3636 1 0 220.33 3,034.57 13.8
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Conclusion and Outlook

Combinatorial relaxation outperforms LP relaxation

Performance depends on energy function and number of allowed
amino acids

Large real-world instances solved optimally in reasonable time

Strong heuristics on speci�c problem classes [Sontag et al.]

Wide range of applications:

� image understanding

� error correcting codes

� frequency assignment in telecommunication
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