161 research outputs found

    Discovery of potent kisspeptin antagonists delineate physiological mechanisms of gonadotropin regulation

    Get PDF
    Neurons that produce gonadotropin-releasing hormone (GnRH) are the final common pathway by which the brain regulates reproduction. GnRH neurons are regulated by an afferent network of kisspeptin-producing neurons. Kisspeptin binds to its cognate receptor on GnRH neurons and stimulates their activity, which in turn provides an obligatory signal for GnRH secretion—thus gating down-stream events supporting reproduction. We have developed kisspeptin antagonists to facilitate the direct determination of the role of kisspeptin neurons in the neuroendocrine regulation of reproduction. In vitro and in vivo studies of analogues of kisspeptin-10 with amino substitutions have identified several potent and specific antagonists. A selected antagonist was shown to inhibit the firing of GnRH neurons in the brain of the mouse and to reduce pulsatile GnRH secretion in female pubertal monkeys; the later supporting a key role of kisspeptin in puberty onset. This analogue also inhibited the kisspeptin-induced release of luteinizing hormone (LH) in rats and mice and blocked the post-castration rise in LH in sheep, rats and mice, suggesting that kisspeptin neurons mediate the negative feedback effect of sex steroids on gonadotropin secretion in mammals. The development of kisspeptin antagonists provides a valuable tool for investigating the physiological and pathophysiological roles of kisspeptin in the regulation of reproduction and could offer a unique therapeutic agent for treating hormone-dependent disorders of reproduction, including precocious puberty, endometriosis, and metastatic prostate cancer

    The Genetic Basis of Delayed Puberty.

    Get PDF
    Delayed pubertal onset has many etiologies, but on average two-thirds of patients presenting with late puberty have self-limited (or constitutional) delayed puberty. Self-limited delayed puberty often has a strong familial basis. Segregation analyses from previous studies show complex models of inheritance, most commonly autosomal dominant, but also including autosomal recessive, bilineal, and X-linked. Sporadic cases are also observed. Despite this, the neuroendocrine mechanisms and genetic regulation remain unclear in the majority of patients with self-limited delayed puberty. Only rarely have mutations in genes known to cause aberrations of the hypothalamic-pituitary-gonadal axis been identified in cases of delayed puberty, and the majority of these are in relatives of patients with congenital hypogonadotropic hypogonadism (CHH), for example in the FGFR1 and GNRHR genes. Using next generation sequencing in a large family with isolated self-limited delayed puberty, a pathogenic mutation in the CHH gene HS6ST1 was found as the likely cause for this phenotype. Additionally, a study comparing the frequency of mutations in genes that cause GnRH deficiency between probands with CHH and probands with isolated self-limited delayed puberty identified that a significantly higher proportion of mutations with a greater degree of oligogenicity were seen in the CHH group. Mutations in the gene IGSF10 have been implicated in the pathogenesis of familial late puberty in a large Finnish cohort. IGSF10 disruption represents a fetal origin of delayed puberty, with dysregulation of GnRH neuronal migration during embryonic development presenting for the first time in adolescence as late puberty. Some patients with self-limited delayed puberty have distinct constitutional features of growth and puberty. Deleterious variants in FTO have been found in families with delayed puberty with extremely low BMI and maturational delay in growth in early childhood. Recent exciting evidence highlights the importance of epigenetic up-regulation of GnRH transcription by a network of miRNAs and transcription factors, including EAP1, during puberty. Whilst a fascinating heterogeneity of genetic defects have been shown to result in delayed and disordered puberty, and many are yet to be discovered, genetic testing may become a realistic diagnostic tool for the differentiation of conditions of delayed puberty.SH is funded by the NIHR (CL-2017-19-002), The Rosetrees Trust (M222-F1), and supported by the Academy of Medical sciences, Wellcome Trust, Medical Research Council, British Heart Foundation, Arthritis Research UK and Diabetes UK through the clinical lecturers scheme (SGL019\1043)

    Environmental enrichment accelerates ocular dominance plasticity in mouse visual cortex whereas transfer to standard cages resulted in a rapid loss of increased plasticity.

    No full text
    In standard cage (SC) raised mice, experience-dependent ocular dominance (OD) plasticity in the primary visual cortex (V1) rapidly declines with age: in postnatal day 25-35 (critical period) mice, 4 days of monocular deprivation (MD) are sufficient to induce OD-shifts towards the open eye; thereafter, 7 days of MD are needed. Beyond postnatal day 110, even 14 days of MD failed to induce OD-plasticity in mouse V1. In contrast, mice raised in a so-called "enriched environment" (EE), exhibit lifelong OD-plasticity. EE-mice have more voluntary physical exercise (running wheels), and experience more social interactions (bigger housing groups) and more cognitive stimulation (regularly changed labyrinths or toys). Whether experience-dependent shifts of V1-activation happen faster in EE-mice and how long the plasticity promoting effect would persist after transferring EE-mice back to SCs has not yet been investigated. To this end, we used intrinsic signal optical imaging to visualize V1-activation i) before and after MD in EE-mice of different age groups (from 1-9 months), and ii) after transferring mice back to SCs after postnatal day 130. Already after 2 days of MD, and thus much faster than in SC-mice, EE-mice of all tested age groups displayed a significant OD-shift towards the open eye. Transfer of EE-mice to SCs immediately abolished OD-plasticity: already after 1 week of SC-housing and MD, OD-shifts could no longer be visualized. In an attempt to rescue abolished OD-plasticity of these mice, we either administered the anti-depressant fluoxetine (in drinking water) or supplied a running wheel in the SCs. OD-plasticity was only rescued for the running wheel- mice. Altogether our results show that raising mice in less deprived environments like large EE-cages strongly accelerates experience-dependent changes in V1-activation compared to the impoverished SC-raising. Furthermore, preventing voluntary physical exercise of EE-mice in adulthood immediately precludes OD-shifts in V1

    A Small Motor Cortex Lesion Abolished Ocular Dominance Plasticity in the Adult Mouse Primary Visual Cortex and Impaired Experience-Dependent Visual Improvements.

    No full text
    It was previously shown that a small lesion in the primary somatosensory cortex (S1) prevented both cortical plasticity and sensory learning in the adult mouse visual system: While 3-month-old control mice continued to show ocular dominance (OD) plasticity in their primary visual cortex (V1) after monocular deprivation (MD), age-matched mice with a small photothrombotically induced (PT) stroke lesion in S1, positioned at least 1 mm anterior to the anterior border of V1, no longer expressed OD-plasticity. In addition, in the S1-lesioned mice, neither the experience-dependent increase of the spatial frequency threshold ("visual acuity") nor of the contrast threshold ("contrast sensitivity") of the optomotor reflex through the open eye was present. To assess whether these plasticity impairments can also occur if a lesion is placed more distant from V1, we tested the effect of a PT-lesion in the secondary motor cortex (M2). We observed that mice with a small M2-lesion restricted to the superficial cortical layers no longer expressed an OD-shift towards the open eye after 7 days of MD in V1 of the lesioned hemisphere. Consistent with previous findings about the consequences of an S1-lesion, OD-plasticity in V1 of the nonlesioned hemisphere of the M2-lesioned mice was still present. In addition, the experience-dependent improvements of both visual acuity and contrast sensitivity of the open eye were severely reduced. In contrast, sham-lesioned mice displayed both an OD-shift and improvements of visual capabilities of their open eye. To summarize, our data indicate that even a very small lesion restricted to the superficial cortical layers and more than 3mm anterior to the anterior border of V1 compromised V1-plasticity and impaired learning-induced visual improvements in adult mice. Thus both plasticity phenomena cannot only depend on modality-specific and local nerve cell networks but are clearly influenced by long-range interactions even from distant brain regions

    Adding a running wheel to standard cages but not fluoxetine treatment rescued ocular dominance plasticity after transferring EE-mice to SCs (EE→SC).

    No full text
    <p>Examples of V1-activity maps and their quantification recorded from EE-mice transferred to SCs: EE->SC-mice without treatment (upper 2 rows), with fluoxetine treatment (3<sup>rd</sup> and 4<sup>th</sup> row), or with added RW in the SCs (5<sup>th</sup> row). Layout and data display as in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0186999#pone.0186999.g001" target="_blank">Fig 1</a>. MD only induced an OD-shift in V1 of the RW-group (EE→SC<sub>RW</sub>): after MD, the contra- and ipsilateral eye activated V1 about equally strong, colder colors appeared in the OD-map, and the histogram of OD-scores shifted to the left (blue arrow). In all other groups, including those treated with fluoxetine, V1 remained dominated by input from the contralateral (deprived) eye: contralateral eye evoked activity patches were darker than those of the ipsilateral eye, the average ODI was positive, and warm colors prevailed in the OD-maps. Scale bar: 1 mm.</p

    Transferring enriched environment-mice to standard cages (SCs) immediately abolished ocular dominance-plasticity.

    No full text
    <p>Intrinsic signal imaging of V1-activation in EE→SC-mice after MD, and its quantification. MD was induced after 1 day (1d) or one week (1w) in SC. Layout and data display as in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0186999#pone.0186999.g001" target="_blank">Fig 1</a>.</p
    • 

    corecore