996 research outputs found

    Seismic diagnostics for transport of angular momentum in stars 1. Rotational splittings from the PMS to the RGB

    Full text link
    Rotational splittings are currently measured for several main sequence stars and a large number of red giants with the space mission Kepler. This will provide stringent constraints on rotation profiles. Our aim is to obtain seismic constraints on the internal transport and surface loss of angular momentum of oscillating solar-like stars. To this end, we study the evolution of rotational splittings from the pre-main sequence to the red-giant branch for stochastically excited oscillation modes. We modified the evolutionary code CESAM2K to take rotationally induced transport in radiative zones into account. Linear rotational splittings were computed for a sequence of 1.3M⊙1.3 M_{\odot} models. Rotation profiles were derived from our evolutionary models and eigenfunctions from linear adiabatic oscillation calculations. We find that transport by meridional circulation and shear turbulence yields far too high a core rotation rate for red-giant models compared with recent seismic observations. We discuss several uncertainties in the physical description of stars that could have an impact on the rotation profiles. For instance, we find that the Goldreich-Schubert-Fricke instability does not extract enough angular momentum from the core to account for the discrepancy. In contrast, an increase of the horizontal turbulent viscosity by 2 orders of magnitude is able to significantly decrease the central rotation rate on the red-giant branch. Our results indicate that it is possible that the prescription for the horizontal turbulent viscosity largely underestimates its actual value or else a mechanism not included in current stellar models of low mass stars is needed to slow down the rotation in the radiative core of red-giant stars.Comment: 15 pages, 13 figures, accepted for publication in A&

    Slowly, rotating non-stationary, fluid solutions of Einstein's equations and their match to Kerr empty space-time

    Get PDF
    A general class of solutions of Einstein's equation for a slowly rotating fluid source, with supporting internal pressure, is matched using Lichnerowicz junction conditions, to the Kerr metric up to and including first order terms in angular speed parameter. It is shown that the match applies to any previously known non-rotating fluid source made to rotate slowly for which a zero pressure boundary surface exists. The method is applied to the dust source of Robertson-Walker and in outline to an interior solution due to McVittie describing gravitational collapse. The applicability of the method to additional examples is transparent. The differential angular velocity of the rotating systems is determined and the induced rotation of local inertial frame is exhibited

    PHARAO Laser Source Flight Model: Design and Performances

    Full text link
    In this paper, we describe the design and the main performances of the PHARAO laser source flight model. PHARAO is a laser cooled cesium clock specially designed for operation in space and the laser source is one of the main sub-systems. The flight model presented in this work is the first remote-controlled laser system designed for spaceborne cold atom manipulation. The main challenges arise from mechanical compatibility with space constraints, which impose a high level of compactness, a low electric power consumption, a wide range of operating temperature and a vacuum environment. We describe the main functions of the laser source and give an overview of the main technologies developed for this instrument. We present some results of the qualification process. The characteristics of the laser source flight model, and their impact on the clock performances, have been verified in operational conditions.Comment: Accepted for publication in Review of Scientific Instrument

    The correlation of the Lyman-alpha forest in close pairs and groups of high-redshift quasars: clustering of matter on scales 1-5 Mpc

    Full text link
    We study the clustering of matter in the intergalactic medium from the Lyman-alpha forests seen in the spectra of pairs or groups of z ~ 2 quasars observed with FORS2 and UVES at the VLT-UT2 Kueyen ESO telescope. The sample consists of five pairs with separations 0.6, 1, 2.1, 2.6 and 4.4 arcmin and a group of four quasars with separations from 2 up to 10 arcmin. This unprecedented data set allows us to measure the transverse flux correlation function for a range of angular scales. Correlations are clearly detectable at separations smaller than 3 arcmin. The shape and correlation length of the transverse correlation function on these scales is in good agreement with those expected from absorption by the photoionized warm intergalactic medium associated with the filamentary and sheet-like structures predicted in CDM-like models for structure formation. At larger separation no significant correlation is detected. Assuming that the absorbing structures are randomly orientated with respect to the line of sight, the comparison of transverse and longitudinal correlation lengths constrains the cosmological parameters (as a modified version of the Alcock & Paczy\'nski test). The present sample is too small to get significant constraints. Using N-body simulations, we investigate the possibility to constrain Ol from future larger samples of QSO pairs with similar separations. The observation of a sample of 30 pairs at 2, 4.5 and 7.5 arcmin should constrain the value of Ol at +- 15 % (2 sigma level). We further use the observed spectra of the group of four quasars, to search for underdense regions in the intergalactic medium. We find a quasi-spherical structure of reduced absorption with radius 12.5 h^{-1} Mpc which we identify as an underdense region.Comment: 11 pages, 10 figures, accepted for publication in MNRA

    Nanotrench for nano and microparticle electrical interconnects

    Get PDF
    We present a simple and versatile patterning procedure for the reliable and reproducible fabrication of high aspect ratio (10 4 ) electrical interconnects that have separation distances down to 20 nm and lengths of several hundreds of microns. The process uses standard optical lithography techniques and allows parallel processing of many junctions, making it easily scalable and industrially relevant. We demonstrate the suitability of these nanotrenches as electrical interconnects for addressing micro and nanoparticles by realizing several circuits with integrated species. Furthermore, low impedance metal-metal low contacts are shown to be obtained when trapping a single metal-coated microsphere in the gap, emphasizing the intrinsic good electrical conductivity of the interconnects, even though a wet process is used. Highly resistive magnetite-based nanoparticles networks also demonstrate the advantage of the high aspect ratio of the nanotrenches for providing access to electrical properties of highly resistive materials, with leakage current levels below 1 pA. © 2010 IOP Publishing Ltd

    Finite axisymmetric charged dust disks in conformastatic spacetimes

    Full text link
    An infinite family of axisymmetric charged dust disks of finite extension is presented. The disks are obtained by solving the vacuum Einstein-Maxwell equations for conformastatic spacetimes, which are characterized by only one metric function. In order to obtain the solutions, it is assumed that the metric function and the electric potential are functionally related and that the metric function is functionally dependent of another auxiliary function, which is taken as a solution of Laplace equation. The solutions for the auxiliary function are then taken as given by the infinite family of generalized Kalnajs disks recently obtained by Gonz\'alez and Reina (MNRAS 371, 1873, 2006), which is expressed in terms of the oblate spheroidal coordinates and represents a well behaved family of finite axisymmetric flat galaxy models. The so obtained relativistic thin disks have then a charge density that is equal, except maybe by a sign, to their mass density, in such a way that the electric and gravitational forces are in exact balance. The energy density of the disks is everywhere positive and well behaved, vanishing at the edge. Accordingly, as the disks are made of dust, their energy-momentum tensor it agrees with all the energy conditions.Comment: Submitted to PR

    Yield scaling, size hierarchy and fluctuations of observables in fragmentation of excited heavy nuclei

    Get PDF
    Multifragmentation properties measured with INDRA are studied for single sources produced in Xe+Sn reactions in the incident energy range 32-50 A MeV and quasiprojectiles from Au+Au collisions at 80 A MeV. A comparison for both types of sources is presented concerning Fisher scaling, Zipf law, fragment size and fluctuation observables. A Fisher scaling is observed for all the data. The pseudo-critical energies extracted from the Fisher scaling are consistent between Xe+Sn central collisions and Au quasi-projectiles. In the latter case it also corresponds to the energy region at which fluctuations are maximal. The critical energies deduced from the Zipf analysis are higher than those from the Fisher analysis.Comment: 30 pages, accepted for publication in Nuclear Physics A, references correcte
    • 

    corecore