367 research outputs found

    MIME : NLG in pre-hospital care

    Get PDF
    This work is supported by the RCUK dot.rural Digital Economy Research Hub, University of Aberdeen (Grant reference: EP/G066051/1)Publisher PD

    Voltage-Gated Sodium Channel Modulation by a New Spider Toxin Ssp1a Isolated From an Australian Theraphosid

    Get PDF
    Given the important role of voltage-gated sodium (NaV) channel-modulating spider toxins in elucidating the function, pharmacology, and mechanism of action of therapeutically relevant NaV channels, we screened the venom from Australian theraphosid species against the human pain target hNaV1.7. Using assay-guided fractionation, we isolated a 33-residue inhibitor cystine knot (ICK) peptide (Ssp1a) belonging to the NaSpTx1 family. Recombinant Ssp1a (rSsp1a) inhibited neuronal hNaV subtypes with a rank order of potency hNaV1.7 > 1.6 > 1.2 > 1.3 > 1.1. rSsp1a inhibited hNaV1.7, hNaV1.2 and hNaV1.3 without significantly altering the voltage-dependence of activation, inactivation, or delay in recovery from inactivation. However, rSsp1a demonstrated voltage-dependent inhibition at hNaV1.7 and rSsp1a-bound hNaV1.7 opened at extreme depolarizations, suggesting rSsp1a likely interacted with voltage-sensing domain II (VSD II) of hNaV1.7 to trap the channel in its resting state. Nuclear magnetic resonance spectroscopy revealed key structural features of Ssp1a, including an amphipathic surface with hydrophobic and charged patches shown by docking studies to comprise the interacting surface. This study provides the basis for future structure-function studies to guide the development of subtype selective inhibitors

    Masting by Eighteen New Zealand Plant Species: The Role of Temperature as a Synchronizing Cue

    Get PDF
    Masting, the intermittent production of large flower or seed crops by a population of perennial plants, can enhance the reproductive success of participating plants and drive fluctuations in seed-consumer populations and other ecosystem components over large geographic areas. The spatial and taxonomic extent over which masting is synchronized can determine its success in enhancing individual plant fitness as well as its ecosystem-level effects, and it can indicate the types of proximal cues that enable reproductive synchrony. Here, we demonstrate high intra- and intergeneric synchrony in mast seeding by 17 species of New Zealand plants from four families across \u3e150000 km2. The synchronous species vary ecologically (pollination and dispersal modes) and are geographically widely separated, so intergeneric synchrony seems unlikely to be adaptive per se. Synchronous fruiting by these species was associated with anomalously high temperatures the summer before seedfall, a cue linked with the La Niña phase of El Niño–Southern Oscillation. The lone asynchronous species appears to respond to summer temperatures, but with a 2-yr rather than 1-yr time lag. The importance of temperature anomalies as cues for synchronized masting suggests that the timing and intensity of masting may be sensitive to global climate change, with widespread effects on taxonomically disparate plant and animal communities

    Providing a Framework for Seagrass Mapping in United States Coastal Ecosystems Using High Spatial Resolution Satellite Imagery

    Get PDF
    Seagrasses have been widely recognized for their ecosystem services, but traditional seagrass monitoring approaches emphasizing ground and aerial observations are costly, time-consuming, and lack standardization across datasets. This study leveraged satellite imagery from Maxar\u27s WorldView-2 and WorldView-3 high spatial resolution, commercial satellite platforms to provide a consistent classification approach for monitoring seagrass at eleven study areas across the continental United States, representing geographically, ecologically, and climatically diverse regions. A single satellite image was selected at each of the eleven study areas to correspond temporally to reference data representing seagrass coverage and was classified into four general classes: land, seagrass, no seagrass, and no data. Satellite-derived seagrass coverage was then compared to reference data using either balanced agreement, the Mann-Whitney U test, or the Kruskal-Wallis test, depending on the format of the reference data used for comparison. Balanced agreement ranged from 58% to 86%, with better agreement between reference- and satellite-indicated seagrass absence (specificity ranged from 88% to 100%) than between reference- and satellite-indicated seagrass presence (sensitivity ranged from 17% to 73%). Results of the Mann-Whitney U and Kruskal-Wallis tests demonstrated that satellite-indicated seagrass percentage cover had moderate to large correlations with reference-indicated seagrass percentage cover, indicative of moderate to strong agreement between datasets. Satellite classification performed best in areas of dense, continuous seagrass compared to areas of sparse, discontinuous seagrass and provided a suitable spatial representation of seagrass distribution within each study area. This study demonstrates that the same methods can be applied across scenes spanning varying seagrass bioregions, atmospheric conditions, and optical water types, which is a significant step toward developing a consistent, operational approach for mapping seagrass coverage at the national and global scales. Accompanying this manuscript are instructional videos describing the processing workflow, including data acquisition, data processing, and satellite image classification. These instructional videos may serve as a management tool to complement field- and aerial-based mapping efforts for monitoring seagrass ecosystems

    Evolution of star formation in the UKIDSS ultra deep survey field-I. Luminosity functions and cosmic star formation rate out to z = 1.6

    Get PDF
    We present new results on the cosmic star formation history in the Subaru/XMM-Newton Deep Survey (SXDS)-Ultra Deep Survey (UDS) field out to z = 1.6. We compile narrowband data from the Subaru Telescope and the Visible and Infrared Survey Telescope forAstronomy (VISTA) in conjunction with broad-band data from the SXDS and UDS, to makea selection of 5725 emission-line galaxies in 12 redshift slices, spanning 10 Gyr of cosmictime. We determine photometric redshifts for the sample using 11-band photometry, and usea spectroscopically confirmed subset to fine tune the resultant redshift distribution. We usethe maximum-likelihood technique to determine luminosity functions in each redshift slice and model the selection effects inherent in any narrow-band selection statistically, to obviatethe retrospective corrections ordinarily required. The deep narrow-band data are sensitive tovery low star formation rates (SFRs), and allow an accurate evaluation of the faint end slopeof the Schechter function, α We find that a is particularly sensitive to the assumed faintest broad-band magnitude of a galaxy capable of hosting an emission line, and propose thatthis limit should be empirically motivated. For this analysis, we base our threshold on thelimiting observed equivalent widths of emission lines in the local Universe. We compute thecharacteristic SFR of galaxies in each redshift slice, and the integrated SFR density,ρ SFR. Wefind our results to be in good agreement with the literature and parametrize the evolution of the SFR density as ρ SFR α(1 + z)4.58 confirming a steep decline in star formation activity since z ~ 1.6.Peer reviewe

    Data hosting infrastructure for primary biodiversity data

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Bioinformatics 12 Suppl. 15 (2011): S5, doi:10.1186/1471-2105-12-S15-S5.Today, an unprecedented volume of primary biodiversity data are being generated worldwide, yet significant amounts of these data have been and will continue to be lost after the conclusion of the projects tasked with collecting them. To get the most value out of these data it is imperative to seek a solution whereby these data are rescued, archived and made available to the biodiversity community. To this end, the biodiversity informatics community requires investment in processes and infrastructure to mitigate data loss and provide solutions for long-term hosting and sharing of biodiversity data. We review the current state of biodiversity data hosting and investigate the technological and sociological barriers to proper data management. We further explore the rescuing and re-hosting of legacy data, the state of existing toolsets and propose a future direction for the development of new discovery tools. We also explore the role of data standards and licensing in the context of data hosting and preservation. We provide five recommendations for the biodiversity community that will foster better data preservation and access: (1) encourage the community's use of data standards, (2) promote the public domain licensing of data, (3) establish a community of those involved in data hosting and archival, (4) establish hosting centers for biodiversity data, and (5) develop tools for data discovery. The community's adoption of standards and development of tools to enable data discovery is essential to sustainable data preservation. Furthermore, the increased adoption of open content licensing, the establishment of data hosting infrastructure and the creation of a data hosting and archiving community are all necessary steps towards the community ensuring that data archival policies become standardized

    Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites

    Get PDF
    Migratory animals are threatened by human-induced global change. However, little is known about how stopover habitat, essential for refuelling during migration, affects the population dynamics of migratory species. Using 20 years of continent-wide citizen science data, we assess population trends of ten shorebird taxa that refuel on Yellow Sea tidal mudflats, a threatened ecosystem that has shrunk by >65% in recent decades. Seven of the taxa declined at rates of up to 8% per year. Taxa with the greatest reliance on the Yellow Sea as a stopover site showed the greatest declines, whereas those that stop primarily in other regions had slowly declining or stable populations. Decline rate was unaffected by shared evolutionary history among taxa and was not predicted by migration distance, breeding range size, non-breeding location, generation time or body size. These results suggest that changes in stopover habitat can severely limit migratory populations

    Overview of the CCP4 suite and current developments.

    Get PDF
    The CCP4 (Collaborative Computational Project, Number 4) software suite is a collection of programs and associated data and software libraries which can be used for macromolecular structure determination by X-ray crystallography. The suite is designed to be flexible, allowing users a number of methods of achieving their aims. The programs are from a wide variety of sources but are connected by a common infrastructure provided by standard file formats, data objects and graphical interfaces. Structure solution by macromolecular crystallography is becoming increasingly automated and the CCP4 suite includes several automation pipelines. After giving a brief description of the evolution of CCP4 over the last 30 years, an overview of the current suite is given. While detailed descriptions are given in the accompanying articles, here it is shown how the individual programs contribute to a complete software package

    Nutrition and frailty:Opportunities for prevention and treatment

    Get PDF
    Frailty is a syndrome of growing importance given the global ageing population. While frailty is a multifactorial process, poor nutritional status is considered a key contributor to its pathophysiology. As nutrition is a modifiable risk factor for frailty, strategies to prevent and treat frailty should consider dietary change. Observational evidence linking nutrition with frailty appears most robust for dietary quality: for example, dietary patterns such as the Mediterranean diet appear to be protective. In addition, research on specific foods, such as a higher consumption of fruit and vegetables and lower consumption of ultra-processed foods are consistent, with healthier profiles linked to lower frailty risk. Few dietary intervention studies have been conducted to date, although a growing number of trials that combine supplementation with exercise training suggest a multi-domain approach may be more effective. This review is based on an interdisciplinary workshop, held in November 2020, and synthesises current understanding of dietary influences on frailty, focusing on opportunities for prevention and treatment. Longer term prospective studies and well-designed trials are needed to determine the causal effects of nutrition on frailty risk and progression and how dietary change can be used to prevent and/or treat frailty in the future
    • 

    corecore