82 research outputs found

    The northern Barents Sea: Water mass distribution and modification

    Get PDF
    The main water masses in the northern Barents Sea are surface water, Arctic water, transformed Atlantic water, and cold bottom water. Using summer data from 1981 and 1982, the formation, distribution, modification and circulation of these water masses are discussed. Recent estimates show that about 2 Sv of Atlantic water enters the Barents Sea by the North Cape Current, balanced by a similar outflow through the strait between Novaya Zemlya and Frans Josef Land. Passing through the Barents Sea, Atlantic-derived water is modified by interaction with other water masses as well as with the atmosphere, and the end products are believed to be important contributors to the hydrographic structure of the Arctic Ocean

    “Stickier” learning through gameplay: an effective approach to climate change education

    Get PDF
    As the impacts of climate change grow, we need better ways to raise awareness and motivate action. Here we assess the effectiveness of an Arctic climate change card game in comparison with the more conventional approach of reading an illustrated article. In-person assessments with control/reading and treatment/game groups (N = 41), were followed four weeks later with a survey. The game was found to be as effective as the article in teaching content of the impacts of climate change over the short term, and was more effective than the article in long-term retention of new information. Game players also had higher levels of engagement and perceptions that they knew ways to help protect Arctic ecosystems. They were also more likely to recommend the game to friends or family than those in the control group were likely to recommend the article to friends or family. As we consider ways to broaden engagement with climate change, we should include games in our portfolio of approaches

    Impact of gameplay vs. reading on mental models of social-ecological systems: a fuzzy cognitive mapping approach

    Get PDF
    Climate change is a highly complex social-ecological problem characterized by system-type dynamics that are important to communicate in a variety of settings, ranging from formal education to decision makers to informal education of the general public. Educational games are one approach that may enhance systems thinking skills. This study used a randomized controlled experiment to compare the impact on the mental models of participants of an educational card game vs. an illustrated article about the Arctic social-ecological system. A total of 41 participants (game: n = 20; reading: n = 21) created pre- and post-intervention mental models of the system, based on a "fuzzy cognitive mapping" approach. Maps were analyzed using network statistics. Both reading the article and playing the game resulted in measurable increases in systems understanding. The group reading the article perceived a more complex system after the intervention, with overall learning gains approximately twice those of the game players. However, game players demonstrated similar learning gains as article readers regarding the climate system, actions both causing environmental problems and protecting the Arctic, as well as the importance of the base- and mid-levels of the food chain. These findings contribute to the growing evidence showing that games are important resources to include as strategies for building capacity to understand and steward sustainable social-ecological systems, in both formal and informal education

    Reconstructing the origin and trajectory of drifting Arctic sea ice

    Get PDF
    Recent studies have indicated that drifting Arctic sea ice plays an important role in the redistribution of sediments and contaminants. Here we present a method to reconstruct the backward trajectory of sea ice from its sampling location in the Eurasian Arctic to its possible site of origin on the shelf, based on historical drift data from the International Arctic Buoy Program. This method is verified by showing that origins derived from the backward trajectories are generally consistent with other indicators, such as comparison of the predicted backward trajectories with known buoy drifts and matching the clay mineralogy of sediments sampled from the sea ice with that of the seafloor in the predicted shelf source regions. The trajectories are then used to identify regions where sediment‐laden ice is exported to the Transpolar Drift Stream: from the New Siberian Islands and the Central Kara Plateau. Calculation of forward trajectories shows that the Kara Sea is a major contributor of ice to the Barents Sea and the southern limb of the Transpolar Drift Stream

    Drifting Arctic Sea Ice Archives Changes in Ocean Surface

    Get PDF
    ÎŽ18O profiles in drifting Arctic sea ice are coupled with back trajectories of ice drift and an ice growth model to reconstruct the surface hydrography of the Arctic Ocean interior. The results compare well with ÎŽ18O values obtained by traditional oceanographic methods and known water mass distributions. Analysis of the stable isotopic composition of sea ice floes sampled at strategic and relatively accessible locations, e.g., Fram Strait, could aid in mapping spatial and temporal variations in Arctic Ocean surface waters

    Jack-of-all-trades, master of none: Postgraduate perspectives on interdisciplinary health research in Australia

    Get PDF
    BACKGROUND: Interdisciplinary health research is increasingly perceived as an expectation of research institutions and funding bodies within Australia. However, little consideration has been given to the extent to which this re-orientation has produced a new type of researcher – an interdisciplinary health researcher. DISCUSSION: As cross-enrolled postgraduate research students, we assert that we do not have an intellectual home. Rather, we must forge a virtual intellectual home through the process of bridging disciplines. In this paper we explain that this virtual home affords us the role of 'interlockers' in future health research. The interlocker role privileges a breadth of understandings across disciplines, rather than a depth in one. SUMMARY: We conclude by reiterating that there is an undeniable need for interdisciplinary health research, and that the roles and actions of interdisciplinary health researchers need to be better understood and catered for. We therefore call for increased consideration and discussion concerning the future roles and capacities of interdisciplinary health researchers such as ourselves

    “Stickier” learning through gameplay: an effective approach to climate change education

    Get PDF
    As the impacts of climate change grow, we need better ways to raise awareness and motivate action. Here we assess the effectiveness of an Arctic climate change card game in comparison with the more conventional approach of reading an illustrated article. In-person assessments with control/reading and treatment/game groups (N = 41), were followed four weeks later with a survey. The game was found to be as effective as the article in teaching content of the impacts of climate change over the short term, and was more effective than the article in long-term retention of new information. Game players also had higher levels of engagement and perceptions that they knew ways to help protect Arctic ecosystems. They were also more likely to recommend the game to friends or family than those in the control group were likely to recommend the article to friends or family. As we consider ways to broaden engagement with climate change, we should include games in our portfolio of approaches

    A 5 ̊C Arctic in a 2 ̊C World

    Get PDF
    The Columbia Climate Center, in partnership with World Wildlife Fund, Woods Hole Research Center, and Arctic 21, held a workshop titled A 5 C Arctic in a 2 C World on July 20 and 21, 2016. The workshop was co-sponsored by the International Arctic Research Center (University of Alaska Fairbanks), the Arctic Institute of North America (Canada), the MEOPAR Network (Marine Environmental Observation, Prediction, and Response), and the Future Ocean Excellence Cluster. The goal of the workshop was to advance thinking on the science and policy implications of the temperature change in the context of the 1.5 to 2 C warming expected for the globe, as dis- cussed during the 21st session of the Conference of the Parties of the United Nations Framework Convention on Climate Change at Paris in 2015. For the Arctic, such an increase means an antic- ipated increase of roughly 3.5 to 5 C. An international group of 41 experts shared perspectives on the regional and global impacts of an up to +5 C Arctic, examined the feasibility of actively lowering Arctic temperatures, and considered realistic timescales associated with such interventions. The group also discussed the science and the political and governance actions required for alternative Arctic futures
    • 

    corecore