156 research outputs found

    Evolution of a Porphyry-Cu Mineralized Magma System at Santa Rita, New Mexico (USA)

    Get PDF
    The magmatic processes leading to porphyry-Cu mineralization at Santa Rita are reconstructed on the basis of petrographic studies, thermobarometry, and laser-ablation inductively-coupled-plasma mass-spectrometry analyses of silicate melt and sulfide inclusions from dikes ranging from basaltic andesite to rhyodacite. Combined results suggest that magma evolution at Santa Rita is similar to that of sulfur-rich volcanoes situated above subduction zones, being characterized by repeated injection of hot, mafic magma into an anhydrite-bearing magma chamber of rhyodacitic composition. The most mafic end-member identified at Santa Rita is a shoshonitic basaltic andesite that crystallized at 1000-1050°C, 1-3 kbar and log fO2 = NNO + 0·7 to NNO + 1·0, whereas the rhyodacite crystallized at 730-760°C and log fO2 = NNO + 1·3 to NNO + 1·9. Mixing between the two magmas caused precipitation of 0·1-0·2 wt % magmatic sulfides and an associated decrease in the Cu content of the silicate melt from 300-500 ppm to less than 20 ppm. Quantitative modeling suggests that temporal storage of ore-metals in magmatic sulfides does not significantly enhance the amount of copper ultimately available to ore-forming hydrothermal fluids. Magmatic sulfides are therefore not vital to the formation of porphyry-Cu deposits, unless a mechanism is required that holds back ore-forming metals until late in the evolution of the volcanic-plutonic syste

    Construction of the granitoid crust of an island arc part I: geochronological and geochemical constraints from the plutonic Kohistan (NW Pakistan)

    Get PDF
    We present major and trace element analyses and U-Pb zircon intrusion ages from I-type granitoids sampled along a crustal transect in the vicinity of the Chilas gabbronorite of the Kohistan paleo-arc. The aim is to investigate the roles of fractional crystallization of mantle-derived melts and partial melting of lower crustal amphibolites to produce the magmatic upper crust of an island arc. The analyzed samples span a wide calc-alkaline compositional range (diorite-tonalite-granodiorite-granite) and have typical subduction-related trace element signatures. Their intrusion ages (75.1±4.5-42.1±4.4Ma) are younger than the Chilas Complex (~85Ma). The new results indicate, in conjunction with literature data, that granitoid formation in the Kohistan arc was a continuous rather than punctuated process. Field observations and the presence of inherited zircons indicate the importance of assimilation processes. Field relations, petrographic observations and major and trace element compositions of the granitoid indicate the importance of amphibole fractionation for their origin. It is concluded that granitoids in the Kohistan arc are derivative products of mantle derived melts that evolved through amphibole-dominated fractionation and intra crustal assimilatio

    Fluid and Halide Melt Inclusions of Magmatic Origin in the Ultramafic and Lower Banded Series, Stillwater Complex, Montana, USA

    Get PDF
    Fluid and melt inclusions trapped in igneous rocks below the platinum-group element (PGE)-rich J-M reef in the Stillwater Complex, Montana provide a physiochemical record of a continuum of high P-T magmatic-hydrothermal and low P-T metamorphic events. Magmatic-hydrothermal volatiles ranged from NaCl-dominated halide melts (>82 wt % NaClequiv) to more complex Na-Ca-K-Fe-Mn-Ba-Si-Al-Cl brines (28-79 wt % NaClequiv) that were trapped simultaneously with a moderate density carbonic fluid (CO2 ± CH4). Early primary inclusions containing immiscible brine and carbonic fluid were trapped in the granophyric albite-quartz core of a zoned pegmatite body in the Gabbronorite I unit at T of ∼ 700-715°C, and P between 4·3 and 5·6 kbar. The pegmatitic body crystallized from a fluid-saturated residual silicate liquid that was channeled through the cooling igneous stratigraphy. Approximately 500 m stratigraphically below the pegmatite, in the Ultramafic Series, early halide melt inclusions representing samples of formerly molten NaCl were trapped in unaltered primary olivine over a minimum range in temperature of 660-800°C. In the same olivine that hosts the halide melt inclusions, secondary brine inclusions with a composition similar to brines in the pegmatite were trapped over a minimum temperature range of 480-640°C. As hydrothermal activity continued during post-solidus cooling of the intrusion, quartz precipitation in the vuggy core of the pegmatite body trapped post-magmatic, immiscible brine and carbonic fluid inclusion assemblages that record a progressive decrease in fluid salinity, T and confining P from lithostatic to near-hydrostatic conditions. Late secondary inclusions containing regional metamorphic fluids were trapped in quartz in the pegmatite after cooling to zeolite-facies conditions. The late metamorphic fluids were low to moderate salinity, CaCl2-MgCl2-H2O solutions. Hydrous salt melts, magmatic brines, and non aqueous (carbonic) fluids may have coexisted and interacted throughout much of the late crystallization and post-magmatic history of the Stillwater Complex. Hence, the potential for interaction between exsolved magmatic volatiles and grain boundary-hosted sulfide minerals below the J-M reef at near-solidus temperatures, and the post-magmatic modification of the J-M reef PGE ore compositions by hydrothermal fluids are strongly indicate

    Experimental determination of magnesia and silica solubilities in graphite-saturated and redox-buffered high-pressure COH fluids in equilibrium with forsterite + enstatite and magnesite + enstatite

    Get PDF
    We experimentally investigated the dissolution of forsterite, enstatite and magnesite in graphite-saturated COH fluids, synthesized using a rocking piston cylinder apparatus at pressures from 1.0 to 2.1 GPa and temperatures from 700 to 1200 \ub0C. Synthetic forsterite, enstatite, and nearly pure natural magnesite were used as starting materials. Redox conditions were buffered by Ni\u2013NiO\u2013H2O (\u394FMQ = 12\u20090.21 to 12\u20091.01), employing a double-capsule setting. Fluids, binary H2O\u2013CO2 mixtures at the P, T, and fO2 conditions investigated, were generated from graphite, oxalic acid anhydrous (H2C2O4) and water. Their dissolved solute loads were analyzed through an improved version of the cryogenic technique, which takes into account the complexities associated with the presence of CO2-bearing fluids. The experimental data show that forsterite\u2009+\u2009enstatite solubility in H2O\u2013CO2 fluids is higher compared to pure water, both in terms of dissolved silica (mSiO2\u2009=\u20091.24 mol/kgH2O versus mSiO2\u2009=\u20090.22 mol/kgH2O at P\u2009=\u20091 GPa, T\u2009=\u2009800 \ub0C) and magnesia (mMgO\u2009=\u20091.08 mol/kgH2O versus mMgO\u2009=\u20090.28 mol/kgH2O) probably due to the formation of organic C\u2013Mg\u2013Si complexes. Our experimental results show that at low temperature conditions, a graphite-saturated H2O\u2013CO2 fluid interacting with a simplified model mantle composition, characterized by low MgO/SiO2 ratios, would lead to the formation of significant amounts of enstatite if solute concentrations are equal, while at higher temperatures these fluid, characterized by MgO/SiO2 ratios comparable with that of olivine, would be less effective in metasomatizing the surrounding rocks. However, the molality of COH fluids increases with pressure and temperature, and quintuplicates with respect to the carbon-free aqueous fluids. Therefore, the amount of fluid required to metasomatize the mantle decreases in the presence of carbon at high P\u2013T conditions. COH fluids are thus effective carriers of C, Mg and Si in the mantle wedge up to the shallowest level of the upper mantle

    On the use of Li isotopes as a proxy for water–rock interaction in fractured crystalline rocks: A case study from the Gotthard rail base tunnel

    Get PDF
    We present Li isotope measurements of groundwater samples collected during drilling of the 57 km long Gotthard rail base tunnel in Switzerland, to explore the use of Li isotope measurements for tracking water–rock interactions in fractured crystalline rocks at temperatures of up to 43 °C. The 17 groundwater samples originate from water-conducting fractures within two specific crystalline rock units, which are characterized by a similar rock mineralogy, but significantly different fluid composition. In particular, the aqueous Li concentrations observed in samples from the two units vary from 1–4 mg/L to 0.01–0.02 mg/L. Whereas δ7Li values from the unit with high Li concentrations are basically constant (δ7Li = 8.5–9.1‰), prominent variations are recorded for the samples from the unit with low Li concentrations (δ7Li = 10–41‰). This observation demonstrates that Li isotope fractionation can be highly sensitive to aqueous Li concentrations. Moreover, δ7Li values from the unit with low Li concentrations correlate well with reaction progress parameters such as pH and [Li]/[Na] ratios, suggesting that δ7Li values are mainly controlled by the residence time of the fracture groundwater. Consequently, 1D reactive transport modeling was performed to simulate mineral reactions and associated Li isotope fractionation along a water-conducting fracture system using the code TOUGHREACT. Modeling results confirm the residence time hypothesis and demonstrate that the absence of δ7Li variation at high Li concentrations can be well explained by limitation of the amount of Li that is incorporated into secondary minerals. Modeling results also suggest that Li uptake by kaolinite forms the key process to cause Li isotope fractionation in the investigated alkaline system (pH >9), and that under slow flow conditions (<10 m/year), this process is associated with a very large Li isotope fractionation factor (ε ≈ −50‰). Moreover, our simulations demonstrate that for simple and well-defined systems with known residence times and low Li concentrations, δ7Li values may help to quantify mineral reaction rates if more thermodynamic data about the temperature-dependent incorporation of Li in secondary minerals as well as corresponding fractionation factors become available in the future. In conclusion, δ7Li values may be a powerful tool to track water–rock interaction in fractured crystalline rocks at temperature higher than those at the Earth’s surface, although their use is restricted to low Li concentrations and well defined flow systems

    Behavior and Impact of Zirconium in the Soil–Plant System: Plant Uptake and Phytotoxicity

    Get PDF
    Because of the large number of sites they pollute, toxic metals that contaminate terrestrial ecosystems are increasingly of environmental and sanitary concern (Uzu et al. 2010, 2011; Shahid et al. 2011a, b, 2012a). Among such metals is zirconium (Zr), which has the atomic number 40 and is a transition metal that resembles titanium in physical and chemical properties (Zaccone et al. 2008). Zr is widely used in many chemical industry processes and in nuclear reactors (Sandoval et al. 2011; Kamal et al. 2011), owing to its useful properties like hardness, corrosion-resistance and permeable to neutrons (Mushtaq 2012). Hence, the recent increased use of Zr by industry, and the occurrence of the Chernobyl and Fukashima catastrophe have enhanced environmental levels in soil and waters (Yirchenko and Agapkina 1993; Mosulishvili et al. 1994 ; Kruglov et al. 1996)

    The granite‑hosted Variscan gold deposit from Santo António mine in the Iberian Massif (Penedono, NW Portugal): constraints from mineral chemistry, fuid inclusions, sulfur and noble gases isotopes

    Get PDF
    The study area is located in the Central Iberian Zone, a major tectonic unit of the Iberian Massif (Variscan belt). In this region the basement is composed of Cambrian-Ordovician sedimentary and minor volcanic rocks that underwent deformation and metamorphism during the Carboniferous. These metamorphic rocks host ca. 331–308 Ma granitic plutons emplaced during the D2 extensional and D3–D4 contractional deformation phases. The gold-bearing quartz veins from the Santo António mine (Penedono region) occur in granite formed at 310.1 ± 1.1 Ma and post-dated the peak of metamorphism. Gold–silver alloy is included in quartz, but mainly occurs in spaces between grains or micro-fractures within arsenopyrite of all three generations and less in pyrite. Late sulphides and sulphosalts were deposited along fractures mainly in arsenopyrite, and locally surrounding the gold–silver alloy grains. Ferberite, scheelite and stolzite replace arsenopyrite. The abundant aqueous carbonic fluids and the occurrence of a low-salinity fluid and their minimum possible entrapment temperature of 360–380 °C suggest that this gold-forming event began during the waning stages of the Variscan orogeny. The mean δ34S values of arsenopyrite and pyrite are − 4.7‰ and − 3.8‰, respectively. He–Ar–Ne isotopic data suggest a crustal origin. The ascent of the granite magma has provided the heat for remobilization of gold, other metals and metalloids from the metamorphic rocks. This gold-arsenopyrite deposit has thus similar characteristics as other selected gold-arsenopyrite deposits from the Iberian Massif, but it contains tungstates.El área de estudio está ubicada en la Zona Centroibérica, una importante unidad tectónica del Macizo Ibérico (cinturón varisco). En esta región el basamento está compuesto por rocas sedimentarias y volcánicas del Cámbrico-Ordovícico tectonizadas y metamorfzadas durante el Carbonífero. Estas rocas metamórfcas sirven como caja de los plutones graníticos datados en torno a 331–308 Ma y que fueron emplazados durante la fase de deformación extensional D2 y las fases de deformación contraccional D3 y D4. Las venas de cuarzo ricas en oro de la mina de Santo António (región de Penedono) que aparecen en un granito datado a los 310.1 ± 1.1 Ma son posteriores al pico metamórfco regional. La aleación de oro y plata se incluye en el cuarzo, pero se produce principalmente en los espacios entre granos o micro-fracturas dentro de arsenopirita de las tres generaciones y menos en pirita. Los sulfuros y sulfuros tardíos se depositaron a lo largo de las fracturas principalmente en arsenopirita, y alrededor de los granos de aleación de oro y plata. Ferberita, scheelita y la estolzita sustituyen a la arsenopirita. Los abundantes líquidos acuosos carbónicos y la presencia de un fuido de baja salinidad y su posible temperatura de atrapamiento mínima en torno de 360-380 ºC sugieren que este evento de formación de oro comenzó durante las etapas fnales de la orogenia varisca. Los valores medios de S de arsenopirita y pirita son − 4.7 ‰ y − 3.8 ‰, respectivamente. Los datos isotópicos de He–Ar–Ne sugieren que en el origen de los fuidos mineralizados participa la corteza continental. El ascenso del magma granítico ha provisto el calor para la movilización del oro, otros metales y metaloides desde las rocas metamórfcas. Este depósito de oroarsenopirita tiene así características similares a otros yaciamientos con arsenopirita y oro del Macizo Ibérico, pero sin embargo contienen tungstates.This research was financially supported by Fundação para a Ciência e Tecnologia through the projects GOLDGranites, Orogenesis, Long-term strain/stress and Deposition of ore metals—PTDC/GEO-GEO/2446/2012: COMPETE: FCOMP-01-0124-FEDER-029192 and UID/GEO/04035/2013

    Amphibole and apatite insights into the evolution and mass balance of Cl and S in magmas associated with porphyry copper deposits

    Get PDF
    Chlorine and sulfur are of paramount importance for supporting the transport and deposition of ore metals at magmatic–hydrothermal systems such as the Coroccohuayco Fe–Cu–Au porphyry–skarn deposit, Peru. Here, we used recent partitioning models to determine the Cl and S concentration of the melts from the Coroccohuayco magmatic suite using apatite and amphibole chemical analyses. The pre-mineralization gabbrodiorite complex hosts S-poor apatite, while the syn- and post-ore dacitic porphyries host S-rich apatite. Our apatite data on the Coroccohuayco magmatic suite are consistent with an increasing oxygen fugacity (from the gabbrodiorite complex to the porphyries) causing the dominant sulfur species to shift from S2− to S6+ at upper crustal pressure where the magmas were emplaced. We suggest that this change in sulfur speciation could have favored S degassing, rather than its sequestration in magmatic sulfides. Using available partitioning models for apatite from the porphyries, pre-degassing S melt concentration was 20–200 ppm. Estimates of absolute magmatic Cl concentrations using amphibole and apatite gave highly contrasting results. Cl melt concentrations obtained from apatite (0.60 wt% for the gabbrodiorite complex; 0.2–0.3 wt% for the porphyries) seems much more reasonable than those obtained from amphibole which are very low (0.37 wt% for the gabbrodiorite complex; 0.10 wt% for the porphyries). In turn, relative variations of the Cl melt concentrations obtained from amphibole during magma cooling are compatible with previous petrological constraints on the Coroccohuayco magmatic suite. This confirms that the gabbrodioritic magma was initially fluid undersaturated upon emplacement, and that magmatic fluid exsolution of the gabbrodiorite and the pluton rooting the porphyry stocks and dikes were emplaced and degassed at 100–200 MPa. Finally, mass balance constraints on S, Cu and Cl were used to estimate the minimum volume of magma required to form the Coroccohuayco deposit. These three estimates are remarkably consistent among each other (ca. 100 km3) and suggest that the Cl melt concentration is at least as critical as that of Cu and S to form an economic mineralization

    Evaluation strategies for isotope ratio measurements of single particles by LA-MC-ICPMS

    Get PDF
    Data evaluation is a crucial step when it comes to the determination of accurate and precise isotope ratios computed from transient signals measured by multi-collector–inductively coupled plasma mass spectrometry (MC-ICPMS) coupled to, for example, laser ablation (LA). In the present study, the applicability of different data evaluation strategies (i.e. ‘point-by-point’, ‘integration’ and ‘linear regression slope’ method) for the computation of (235)U/(238)U isotope ratios measured in single particles by LA-MC-ICPMS was investigated. The analyzed uranium oxide particles (i.e. 9073-01-B, CRM U010 and NUSIMEP-7 test samples), having sizes down to the sub-micrometre range, are certified with respect to their (235)U/(238)U isotopic signature, which enabled evaluation of the applied strategies with respect to precision and accuracy. The different strategies were also compared with respect to their expanded uncertainties. Even though the ‘point-by-point’ method proved to be superior, the other methods are advantageous, as they take weighted signal intensities into account. For the first time, the use of a ‘finite mixture model’ is presented for the determination of an unknown number of different U isotopic compositions of single particles present on the same planchet. The model uses an algorithm that determines the number of isotopic signatures by attributing individual data points to computed clusters. The (235)U/(238)U isotope ratios are then determined by means of the slopes of linear regressions estimated for each cluster. The model was successfully applied for the accurate determination of different (235)U/(238)U isotope ratios of particles deposited on the NUSIMEP-7 test samples. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00216-012-6674-3) contains supplementary material, which is available to authorized users
    corecore