1,744 research outputs found

    Ocean feature recognition using genetic algorithms with fuzzy fitness functions (GA/F3)

    Get PDF
    A model for genetic algorithms with semantic nets is derived for which the relationships between concepts is depicted as a semantic net. An organism represents the manner in which objects in a scene are attached to concepts in the net. Predicates between object pairs are continuous valued truth functions in the form of an inverse exponential function (e sub beta lxl). 1:n relationships are combined via the fuzzy OR (Max (...)). Finally, predicates between pairs of concepts are resolved by taking the average of the combined predicate values of the objects attached to the concept at the tail of the arc representing the predicate in the semantic net. The method is illustrated by applying it to the identification of oceanic features in the North Atlantic

    NUMERICAL AND EXPERIMENTAL STUDY OF A TWO-STAGE SAVONIUS WIND TURBINE

    Get PDF
    This article presents a numerical and experimental study of vertical axis wind turbine performance comparison involving a two-stage Savonius rotor with similar parameters. The experimental study is conducted in the aerodynamic tunnel at the Fluid Mechanics Laboratory of the Federal University of Rio Grande do Sul. The aerodynamics rotors are manufactured by 3D prototyping technique. Numerical simulations are performed using the Finite Volumes Method performed by the solution of the Reynolds Averaged Navier-Stokes (RANS) and continuity equations using the SST k-ω turbulence model. The numerical domain is modeled in order to maintain the same characteristics of the experimental model. The mesh quality is evaluated through the GCI (Grid Convergence Index) method. The static and dynamic torque coefficients and the power coefficients are compared. The tests are made without blockage corrections due to the small blockage ratio from 7.5%. Results show that the turbine has a positive static torque coefficient for any rotor angles. The dynamic torque reaches the maximum value for a tip speed ratio (λ) of 0.2 for the experimental and numerical cases. The relative difference between the numerical simulations and the experimental results are between 3.8% and 13.4%

    STATORS USE INFLUENCE ON THE PERFORMANCE OF A SAVONIUS WIND ROTOR USING COMPUTATIONAL FLUID DYNAMICS

    Get PDF
    This paper aims at verifying the influence of using five kinds of stators in the averaged moment and power coefficients of a Savonius wind rotor using computational fluid dynamics (CFD). The analyzed stators have cylindrical shape with two and three openings, one and four deflector blades and walls shaped like a wings. The equations of continuity, Reynolds Averaged Navier-Stokes – RANS and the Eddy Viscosity Model k-ω SST, in its Low-Reynolds approaches, with hybrid near wall treatment; are numerically solved using the commercial software Star-CCM+, based on Finite Volume Method, resulting in the fields of pressure and velocity of the flow and the forces acting on the rotor buckets. The moment and power coefficients are achieved through integration of forces coming from the effects of pressure and viscosity of the wind on the buckets device. The influence of the stators use in the moment and power coefficients is checked by changing the geometry of the device for each simulations series, keeping the Reynolds number based on rotor diameter equal to 433,500. The obtained values for averaged moment and power coefficients indicate that for each type of stator used, there was maximum performance for a given tip speed ratio of rotor. Improvement in performance over the operation without stator was obtained only to the operations using stator with four deflector blades and to the stator with cylindrical shape with three openings. The improvement percentage in performance obtained for the best condition (use of four deflector blades at tip speed ratio equal to 1) is 12% compared to the performance of the rotor operating without stator

    EVALUATION OF THE APPLICABILITY OF A TURBULENT WAKE INLET BOUNDARY CONDITION

    Get PDF
    With the objective of reducing the computational cost of the iterative processes of aerodynamic components design, tests were carried out to study under what conditions, and with what difference, only part of the calculation domain can be solved using as input information obtained from complete simulations already solved. An experimental study of an airfoil exposed to the wake interference of an upstream airfoil at a Reynolds number of 150,000 was used to verify the solutions of the Reynolds-Averaged Navier-Stokes equations solved applying the k-ω Shear Stress Transport model for turbulence closure. A Grid Convergence Index study was performed to verify if the solution of the equations for the adopted discretization leads to results within the asymptotic range. With the physical coherence of the numerical methodology verified, comparisons between the simulations with the domain comprising the two airfoils and the domain comprising only the downstream airfoil were performed. Computational time reductions in the order of 40% are observed. The differences in the aerodynamic coefficients for the two types of simulation are presented as a function of distances non-dimensionalized by the characteristic length of the body that disturbs the flow forming the wake, showing that the difference between the two methods was inversely proportional to the distance between the two bodies. Behavior that was maintained until a point where the simulation diverges, equivalent to 25% of the characteristic length of the body that generates the wake

    ANALYSIS OF THE TURBULENCE-RADIATION INTERACTION IN A METHANE-AIR DIFFUSION FLAME

    Get PDF
    The phenomenon of turbulence-radiation interaction (TRI) has been demonstrated experimentally, theoretically and numerically to be important in a great number of engineering applications. This paper presents a numerical study on the subject, focusing on a methane-air diffusion flame confined in a rectangular enclosure. An open source, Fortran-based code, Fire Dynamics Simulator, is used for the analysis. Large Eddy Simulation (LES) is adopted to model the turbulence, and to resolve the sub-grid scale terms the dynamic Smagorinsky model is employed. To solve the radiative heat transfer, the finite volume method is used alongside the Weighted-Sum-of-Gray-Gases model. The main objective of the present work is to assess the magnitude of TRI effects for the configuration proposed. For this purpose, the time-averaged wall heat fluxes and volumetric radiative heat source, calculated from the LES results, are compared with those same quantities obtained by independent simulations initialized using mean temperature and species concentration fields. TRI effects are found to be responsible for differences up to 30% between results considering and neglecting turbulent fluctuations. These differences are larger for the radiative heat source and for the radiative heat flux to the walls, smaller for the total heat flux, and almost negligible for the convective heat flux. The influence of the fuel stream Reynolds number on the TRI effects is also evaluated, and a slight decrease on the magnitude of TRI is observed with the increase of that parameter

    INTEGRAL observations of the blazar Mrk 421 in outburst (Results of a multi-wavelength campaign)

    Full text link
    We report the results of a multi-wavelength campaign on the blazar Mrk 421 during outburst. We observed four strong flares at X-ray energies that were not seen at other wavelengths (partially because of missing data). From the fastest rise in the X-rays, an upper limit could be derived on the extension of the emission region. A time lag between high-energy and low-energy X-rays was observed, which allowed an estimation of the magnetic-field strength. The spectral analysis of the X-rays revealed a slight spectral hardening of the low-energy (3 - 43 keV) spectral index. The hardness-ratio analysis of the Swift-XRT (0.2 - 10 keV) data indicated a small correlation with the intensity; i. e., a hard-to-soft evolution was observed. At the energies of IBIS/ISGRI (20 - 150 keV), such correlations are less obvious. A multiwavelength spectrum was composed and the X-ray and bolometric luminosities are calculated.Comment: 15 pages, 18 figures; accepted by Astronomy & Astrophysic

    OPTIMIZATION TO INCREASE ENERGY EFFICIENCY OF A SIROCCO CENTRIFUGAL FAN USING COMPUTATIONAL FLUID DYNAMICS (CFD)

    Get PDF
    This paper presents a numerical and experimental study on the aerodynamic performance of Sirocco centrifugal fans seeking an increase in energy efficiency. Numerical simulations are performed by the Finite-Volume Method commercial code ANSYS Fluent. Characteristics such as flow rate at the outlet, consumed power and sound pressure levels emitted by centrifugal fans with the original model of 16 blades and the optimized models of 16 and 14 blades are compared. Numerical calculations are performed by the continuity equation, the Reynolds Averaged Navier- Stokes (RANS) equations and the k-ω SST turbulence model. The quality of the mesh is evaluated for three different mesh densities. Results demonstrate that it was possible to obtain an increase of flow rate up to 22.7%, and reductions in the noise levels without increasing the consumption of the electric motor

    EXPERIMENTAL EVALUATION OF THE AERODYNAMIC PERFORMANCE OF SMALL WIND TURBINES CONFECTIONED IN 3D PROTOTYPING

    Get PDF
    This paper presents the experimental evaluation of the aerodynamic performance of two small wind turbines models with five blades in the Aerodynamic Tunnel Professor Debi Pada Sadhu. The models were confectioned on a reduced scale using 3D prototyping, the first one was designed using the blade element method, assuming the power coefficient of Betz, named Optimal Blade Betz (OBB) and the second is modified from the first one, named Optimal Blade Betz Modified (OBBM). The velocity distribution in the cross section of the tunnel was determined with the aid of a Pitot tube before the evaluation of the equipment. With the known tunnel velocity profile, the static torque of the prototypes were determined with the use of a digital torquemeter coupled to the machine axis, which recorded the readings for the speed range of 1 m/s to 9.88 m/s. Also with the torquemeter, were evaluated the influence of the angular position of the blades in the measured torque. The blades were designed allowing vary their angular position in the hub, thus changing the angle of attack, and by consequence, the torque produced. A photo tachometer was employed to measure the rotation of the model in free spin. With the experimental data, the curves of static torque and angular velocity were determined as a function of incident speed. Through experimental determination of the incident velocity profile and the velocity profile in the aerodynamic wake of each turbine, the variation of the amount of momentum of the outflow was evaluated, and so the power extracted by the rotor in free rotation. This study aims to contribute to the design of a real small wind turbine, informing the aerodynamic characteristics of the equipment that can be constructed with this layout. The experimental results demonstrate good approximation for torque and power to the results obtained by evaluation by element of the blade method. The turbine constructed with Optimal Betz Blades presented static torque 17.8% higher than constructed with the Modified Blades and extracted 22% more power from the air outflow

    Premartensitic transition driven by magnetoelastic interaction in bcc ferromagnetic Ni2MnGaNi_{2}MnGa

    Get PDF
    We show that the magnetoelastic coupling between the magnetization and the amplitude of a short wavelength phonon enables the existence of a first order premartensitic transition from a bcc to a micromodulated phase in Ni2MnGaNi_{2}MnGa. Such a magnetoelastic coupling has been experimentally evidenced by AC susceptibility and ultrasonic measurements under applied magnetic field. A latent heat around 9 J/mol has been measured using a highly sensitive calorimeter. This value is in very good agreement with the value predicted by a proposed model.Comment: 4 pages RevTex, 3 Postscript figures, to be published in Physical Review Letter
    corecore