69 research outputs found

    Glycine receptor subunits -a2 and a3 participate in different inhibitory circuits that alter the receptive field organization of on- and off-center retinal ganglion cells.

    Get PDF
    In the retina, the receptive fields (RFs) of most neurons are comprised of an excitatory center and a suppressive surround. Retinal ganglion cell (RGC) RF center excitatory input arises from bipolar cell (BC) inputs, while their surround arises from lateral inhibitory inputs. Because of the availability of selective antagonists the role of GABAergic inputs has been well defined. In contrast, the role of individual glycine receptor (GlyR) subunit inhibition is less clear because the antagonist, strychnine, blocks all GlyR subunit combinations. To define individual retinal circuits that utilize specific glycinergic subunits, I examined maintained and visually-evoked responses of ON- and OFF-center GCs from mice lacking expression of the GlyRa2 (Glra2-/-) or GlyRa3 (Glra3-/-) subunits to those of C57Bl/6J (WT) RGCs using an in vivo extracellular approach. Previous observations have defined glycine and GABA inputs across BC classes and in a variety of amacrine and RGCs. Using this information and by comparing the responses of WT vs. Glra2-/- and Glra3-/- RGCs; I conclude that both subunits modulate local RF interactions. Within the On pathway, GlyRa2 and GlyRa3 inputs play similar roles. Their responses predict that they participate in serial inhibitory circuits that decrease a direct GABAergic inhibition that modulates maintained, but not peak firing rates. In contrast within the Off pathway, GlyRa2 and GlyRa3 inputs define two populations of RGCs. In one, GlyRa2 participates in a serial inhibitory circuit that modulates maintained firing, whereas in the other, GlyRa,3 mediates direct inhibition that controls the peak firing rate. Only GlyRa2 modulates lateral interactions to the RF surround where it mediates a direct inhibitory input to all OFF-center RGCs. My results suggest that GlyRa2 and GlyRa3 inputs define two populations of OFF-center RGCs. In addition, both subunits participate in retinal circuits that can be distinguished not only by the RGC RF center type, but also by the type of inhibitory circuit. These results are the first demonstration of subunit specific control of RGC visual responses and, are the first evidence of serial glycine to GABA as well as glycine to glycine circuits in the retina

    Testing for redshift evolution of Type Ia supernovae using the strongly lensed PS1-10afx at z=1.4z=1.4

    Full text link
    The light from distant supernovae (SNe) can be magnified through gravitational lensing when a foreground galaxy is located along the line of sight. This line-up allows for detailed studies of SNe at high redshift that otherwise would not be possible. Spectroscopic observations of lensed high-redshift Type Ia supernovae (SNe Ia) are of particular interest since they can be used to test for evolution of their intrinsic properties. The use of SNe Ia for probing the cosmic expansion history has proven to be an extremely powerful method for measuring cosmological parameters. However, if systematic redshift-dependent properties are found, their usefulness for future surveys could be challenged. We investigate whether the spectroscopic properties of the strongly lensed and very distant SN Ia PS1-10afx at z=1.4z=1.4 deviates from the well-studied populations of normal SNe Ia at nearby or intermediate distance. We created median spectra from nearby and intermediate-redshift spectroscopically normal SNe Ia from the literature at -5 and +1 days from light-curve maximum. We then compared these median spectra to those of PS1-10afx. We do not find signs of spectral evolution in PS1-10afx. The observed deviation between PS1-10afx and the median templates are within what is found for SNe at low- and intermediate-redshift. There is a noticeable broad feature centred at λ3500\rm \lambda\sim 3500~\AA{}, which is present only to a lesser extent in individual low and intermediate redshift SN Ia spectra. From a comparison with a recently developed explosion model, we find this feature to be dominated by iron peak elements, in particular, singly ionized cobalt and chromium.Comment: accepted for publication in section 4. Extragalactic astronomy of Astronomy and Astrophysic

    Probing gas and dust in the tidal tail of NGC 5221 with the type Ia supernova iPTF16abc

    Full text link
    Context. Type Ia supernovae (SNe Ia) can be used to address numerous questions in astrophysics and cosmology. Due to their well known spectral and photometric properties, SNe Ia are well suited to study gas and dust along the lines-of-sight to the explosions. For example, narrow Na I D and Ca II H&K absorption lines can be studied easily, because of the well-defined spectral continuum of SNe Ia around these features. Aims. We study the gas and dust along the line-of-sight to iPTF16abc, which occurred in an unusual location, in a tidal arm, 80 kpc from centre of the galaxy NGC 5221. Methods. Using a time-series of high-resolution spectra, we examine narrow Na I D and Ca II H&K absorption features for variations in time, which would be indicative for circumstellar (CS) matter. Furthermore, we take advantage of the well known photometric properties of SNe Ia to determine reddening due to dust along the line-of-sight. Results. From the lack of variations in Na I D and Ca II H&K, we determine that none of the detected absorption features originate from the CS medium of iPTF16abc. While the Na I D and Ca II H&K absorption is found to be optically thick, a negligible amount of reddening points to a small column of interstellar dust. Conclusions. We find that the gas along the line-of-sight to iPTF16abc is typical of what might be found in the interstellar medium (ISM) within a galaxy. It suggests that we are observing gas that has been tidally stripped during an interaction of NGC 5221 with one of its neighbouring galaxies in the past 109\sim10^9 years. In the future, the gas clouds could become the locations of star formation. On a longer time scale, the clouds might diffuse, enriching the circum-galactic medium (CGM) with metals. The gas profile along the line-of-sight should be useful for future studies of the dynamics of the galaxy group containing NGC 5221.Comment: 8 pages, 6 figure

    The peculiar extinction law of SN2014J measured with The Hubble Space Telescope

    Get PDF
    The wavelength-dependence of the extinction of Type Ia SN2014J in the nearby galaxy M82 has been measured using UV to near-IR photometry obtained with the Hubble Space Telescope, the Nordic Optical Telescope, and the Mount Abu Infrared Telescope. This is the first time that the reddening of a SN Ia is characterized over the full wavelength range of 0.20.2-22 microns. A total-to-selective extinction, RV3.1R_V\geq3.1, is ruled out with high significance. The best fit at maximum using a Galactic type extinction law yields RV=1.4±0.1R_V = 1.4\pm0.1. The observed reddening of SN2014J is also compatible with a power-law extinction, Aλ/AV=(λ/λV)pA_{\lambda}/A_V = \left( {\lambda}/ {\lambda_V} \right)^{p} as expected from multiple scattering of light, with p=2.1±0.1p=-2.1\pm0.1. After correction for differences in reddening, SN2014J appears to be very similar to SN2011fe over the 14 broad-band filter light curves used in our study.Comment: Accepted for publication in ApJ

    Sifting for Sapphires: Systematic Selection of Tidal Disruption Events in iPTF

    Get PDF
    We present results from a systematic selection of tidal disruption events (TDEs) in a wide-area (4800~deg2^2), g+Rg+R band, Intermediate Palomar Transient Factory (iPTF) experiment. Our selection targets typical optically-selected TDEs: bright (>>60\% flux increase) and blue transients residing in the center of red galaxies. Using photometric selection criteria to down-select from a total of 493 nuclear transients to a sample of 26 sources, we then use follow-up UV imaging with the Neil Gehrels Swift Telescope, ground-based optical spectroscopy, and light curve fitting to classify them as 14 Type Ia supernovae (SNe Ia), 9 highly variable active galactic nuclei (AGNs), 2 confirmed TDEs, and 1 potential core-collapse supernova. We find it possible to filter AGNs by employing a more stringent transient color cut (gr<g-r < -0.2 mag); further, UV imaging is the best discriminator for filtering SNe, since SNe Ia can appear as blue, optically, as TDEs in their early phases. However, when UV-optical color is unavailable, higher precision astrometry can also effectively reduce SNe contamination in the optical. Our most stringent optical photometric selection criteria yields a 4.5:1 contamination rate, allowing for a manageable number of TDE candidates for complete spectroscopic follow-up and real-time classification in the ZTF era. We measure a TDE per galaxy rate of 1.71.3+2.9^{+2.9}_{-1.3} ×\times104^{-4} gal1^{-1} yr1^{-1} (90\% CL in Poisson statistics). This does not account for TDEs outside our selection criteria, thus may not reflect the total TDE population, which is yet to be fully mapped.Comment: 24 pages, 21 figures. Accepted for publication in the Astrophysical Journal Supplement Serie

    iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova

    Get PDF
    We report the discovery of a multiply-imaged gravitationally lensed Type Ia supernova, iPTF16geu (SN 2016geu), at redshift z=0.409z=0.409. This phenomenon could be identified because the light from the stellar explosion was magnified more than fifty times by the curvature of space around matter in an intervening galaxy. We used high spatial resolution observations to resolve four images of the lensed supernova, approximately 0.3" from the center of the foreground galaxy. The observations probe a physical scale of \sim1 kiloparsec, smaller than what is typical in other studies of extragalactic gravitational lensing. The large magnification and symmetric image configuration implies close alignment between the line-of-sight to the supernova and the lens. The relative magnifications of the four images provide evidence for sub-structures in the lensing galaxy.Comment: Matches published versio

    Near-IR Type Ia SN distances: host galaxy extinction and mass-step corrections revisited

    Get PDF
    We present optical and near-infrared (NIR, YJH-band) observations of 42 Type Ia supernovae (SNe Ia) discovered by the untargeted intermediate Palomar Transient Factory (iPTF) survey. This new data-set covers a broad range of redshifts and host galaxy stellar masses, compared to previous SN Ia efforts in the NIR. We construct a sample, using also literature data at optical and NIR wavelengths, to examine claimed correlations between the host stellar masses and the Hubble diagram residuals. The SN magnitudes are corrected for host galaxy extinction using either a global total-to-selective extinction ratio, R_V = 2.0 for all SNe, or a best-fit RV for each SN individually. Unlike previous studies which were based on a narrower range in host stellar mass, we do not find evidence for a "mass-step", between the color- and stretch-corrected peak J and H magnitudes for galaxies below and above log(M_∗/M_⊙) = 10. However, the mass-step remains significant (3σ) at optical wavelengths (g,r,i) when using a global R_V, but vanishes when each SN is corrected using their individual best-fit R_V. Our study confirms the benefits of the NIR SN Ia distance estimates, as these are largely exempted from the empirical corrections dominating the systematic uncertainties in the optical

    A hot and fast ultra-stripped supernova that likely formed a compact neutron star binary.

    Get PDF
    Compact neutron star binary systems are produced from binary massive stars through stellar evolution involving up to two supernova explosions. The final stages in the formation of these systems have not been directly observed. We report the discovery of iPTF 14gqr (SN 2014ft), a type Ic supernova with a fast-evolving light curve indicating an extremely low ejecta mass (≈0.2 solar masses) and low kinetic energy (≈2 × 1050 ergs). Early photometry and spectroscopy reveal evidence of shock cooling of an extended helium-rich envelope, likely ejected in an intense pre-explosion mass-loss episode of the progenitor. Taken together, we interpret iPTF 14gqr as evidence for ultra-stripped supernovae that form neutron stars in compact binary systems

    Multiwavelength observations of the extraordinary accretion event AT2021lwx

    Get PDF
    We present observations from X-ray to mid-infrared wavelengths of the most energetic non-quasar transient ever observed, AT2021lwx. Our data show a single optical brightening by a factor >100>100 to a luminosity of 7×10457\times10^{45} erg s1^{-1}, and a total radiated energy of 1.5×10531.5\times10^{53} erg, both greater than any known optical transient. The decline is smooth and exponential and the ultra-violet - optical spectral energy distribution resembles a black body with temperature 1.2×1041.2\times10^4 K. Tentative X-ray detections indicate a secondary mode of emission, while a delayed mid-infrared flare points to the presence of dust surrounding the transient. The spectra are similar to recently discovered optical flares in known active galactic nuclei but lack some characteristic features. The lack of emission for the previous seven years is inconsistent with the short-term, stochastic variability observed in quasars, while the extreme luminosity and long timescale of the transient disfavour the disruption of a single solar-mass star. The luminosity could be generated by the disruption of a much more massive star, but the likelihood of such an event occurring is small. A plausible scenario is the accretion of a giant molecular cloud by a dormant black hole of 10810910^8 - 10^9 solar masses. AT2021lwx thus represents an extreme extension of the known scenarios of black hole accretion.Comment: 11 pages, 5 figures, Accepted for publication in MNRA
    corecore