28 research outputs found

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Dietary nitrate increases submaximal SERCA activity and ADP transfer to mitochondria in slow-twitch muscle of female mice

    Get PDF
    Rapid oscillations in cytosolic calcium (Ca2+) coordinate muscle contraction, relaxation, and physical movement. Intriguingly, dietary nitrate decreases ATP cost of contraction, increases force production, and increases cytosolic Ca2+, which would seemingly necessitate a greater demand for sarcoplasmic reticulum Ca2+ ATPase (SERCA) to sequester Ca2+ within the sarcoplasmic reticulum (SR) during relaxation. As SERCA is highly regulated, we aimed to determine the effect of 7-day nitrate supplementation (1 mM via drinking water) on SERCA enzymatic properties and the functional interaction between SERCA and mitochondrial oxidative phosphorylation. In soleus, we report that dietary nitrate increased force production across all stimulation frequencies tested, and throughout a 25 min fatigue protocol. Mice supplemented with nitrate also displayed an ∌25% increase in submaximal SERCA activity and SERCA efficiency (P = 0.053) in the soleus. To examine a possible link between ATP consumption and production, we established a methodology coupling SERCA and mitochondria in permeabilized muscle fibers. The premise of this experiment is that the addition of Ca2+ in the presence of ATP generates ADP from SERCA to support mitochondrial respiration. Similar to submaximal SERCA activity, mitochondrial respiration supported by SERCA-derived ADP was increased by ∌20% following nitrate in red gastrocnemius. This effect was fully attenuated by the SERCA inhibitor cyclopiazonic acid and was not attributed to differences in mitochondrial oxidative capacity, ADP sensitivity, protein content, or reactive oxygen species emission. Overall, these findings suggest that improvements in submaximal SERCA kinetics may contribute to the effects of nitrate on force production during fatigue.NEW & NOTEWORTHY We show that nitrate supplementation increased force production during fatigue and increased submaximal SERCA activity. This was also evident regarding the high-energy phosphate transfer from SERCA to mitochondria, as nitrate increased mitochondrial respiration supported by SERCA-derived ADP. Surprisingly, these observations were only apparent in muscle primarily expressing type I (soleus) but not type II fibers (EDL). These findings suggest that alterations in SERCA properties are a possible mechanism in which nitrate increases force during fatiguing contractions

    In vitroketone-supported mitochondrial respiration is minimal when other substrates are readily available in cardiac and skeletal muscle

    No full text
    Ketone bodies (KB) have recently gained popularity as an alternative fuel source to support mitochondrial oxidative phosphorylation and enhance exercise performance. However, given the low activity of ketolytic enzymes and potential inhibition from carbohydrate oxidation, it remains unknown if KBs can contribute to energy production. We therefore determined the ability of KBs (sodium dl-ÎČ-hydroxybutyrate, ÎČ-HB; lithium acetoacetate, AcAc) to stimulate in vitro mitochondrial respiration in the left ventricle (LV) and red gastrocnemius (RG) of rats, and in human vastus lateralis. Compared to pyruvate, the ability of KBs to maximally drive respiration was low in isolated mitochondria and permeabilized fibres (PmFb) from the LV (∌30–35% of pyruvate), RG (∌10–30%), and human vastus lateralis (∌2–10%). In PmFb, the concentration of KBs required to half-maximally drive respiration (LV: 889 ”m ÎČ-HB, 801 ”m AcAc; RG: 782 ”m ÎČ-HB, 267 ”m AcAc) were greater than KB content representative of the muscle microenvironment (∌100 ”m). This would predict low rates (∌1–4% of pyruvate) of biological KB-supported respiration in the LV (8–14 pmol s−1 mg−1) and RG (3–6 pmol s−1 mg−1) at rest and following exercise. Moreover, KBs did not increase respiration in the presence of saturating pyruvate, submaximal pyruvate (100 ”m) reduced the ability of physiological ÎČ-HB to drive respiration, and addition of other intracellular substrates (succinate + palmitoylcarnitine) decreased maximal KB-supported respiration. As a result, product inhibition is likely to limit KB oxidation. Altogether, the ability of KBs to drive mitochondrial respiration is minimal and they are likely to be outcompeted by other substrates, compromising their use as an important energy source

    Nitrate consumption preserves HFD-induced skeletal muscle mitochondrial ADP sensitivity and lysine acetylation: A potential role for SIRT1

    No full text
    International audienceDietary nitrate supplementation, and the subsequent serial reduction to nitric oxide, has been shown to improve glucose homeostasis in several pre-clinical models of obesity and insulin resistance. While the mechanisms remain poorly defined, the beneficial effects of nitrate appear to be partially dependent on AMPK-mediated signaling events, a central regulator of metabolism and mitochondrial bioenergetics. Since AMPK can activate SIRT1, we aimed to determine if nitrate supplementation (4 mM sodium nitrate via drinking water) improved skeletal muscle mitochondrial bioenergetics and acetylation status in mice fed a high-fat diet (HFD: 60% fat). Consumption of HFD induced whole-body glucose intolerance, and within muscle attenuated insulin-induced Akt phosphorylation, mitochondrial ADP sensitivity (higher apparent K m), submaximal ADP-supported respiration, mitochondrial hydrogen peroxide (mtH 2 O 2) production in the presence of ADP and increased cellular protein carbonylation alongside mitochondrial-specific acetylation. Consumption of nitrate partially preserved glucose tolerance and, within skeletal muscle, normalized insulin-induced Akt phosphorylation, mitochondrial ADP sensitivity, mtH 2 O 2 , protein carbonylation and global mitochondrial acetylation status. Nitrate also prevented the HFD-mediated reduction in SIRT1 protein, and interestingly, the positive effects of nitrate ingestion on glucose homeostasis and mitochondrial acetylation levels were abolished in SIRT1 inducible knockout mice, suggesting SIRT1 is required for the beneficial effects of dietary nitrate. Altogether, dietary nitrate preserves mitochondrial ADP sensitivity and global lysine acetylation in HFD-fed mice, while in the absence of SIRT1, the effects of nitrate on glucose tolerance and mitochondrial acetylation were abrogated

    Hacia la construcciĂłn de un concepto de autonomĂ­a territorial en la ConstituciĂłn colombiana

    Get PDF
    Mitochondrial H2O2 has been causally linked to diet‐induced insulin resistance, although it remains unclear if muscle disuse similarly increases mitochondrial H2O2. Therefore, we investigated the potential that an increase in skeletal muscle mitochondrial H2O2 emission, potentially as a result of decreased ADP sensitivity, contributes to cellular redox stress and the induction of insulin resistance during short‐term bed rest in 20 healthy males. Bed rest led to a decline in glucose infusion rate during a hyperinsulinaemic‐euglycaemic clamp (−42 ± 2%; P < 0.001), and in permeabilized skeletal muscle fibres it decreased OXPHOS protein content (−16 ± 8%) and mitochondrial respiration across a range of ADP concentrations (−13 ± 5%). While bed rest tended to increase maximal mitochondrial H2O2 emission rates (P = 0.053), H2O2 emission in the presence of ADP concentrations indicative of resting muscle, the ratio of H2O2 emission to mitochondrial O2 consumption, and markers of oxidative stress were not altered following bed rest. Altogether, while bed rest impairs mitochondrial ADP‐stimulated respiration, an increase in mitochondrial H2O2 emission does not contribute to the induction of insulin resistance following short‐term bed rest
    corecore