116 research outputs found

    Use of designer nucleases for targeted gene and genome editing in plants

    Get PDF
    The ability to efficiently inactivate or replace genes in model organisms allowed a rapid expansion of our understanding of many of the genetic, biochemical, molecular and cellular mechanisms that support life. With the advent of new techniques for manipulating genes and genomes that are applicable not only to single-celled organisms, but also to more complex organisms such as animals and plants, the speed with which scientists and biotechnologists can expand fundamental knowledge and apply that knowledge to improvements in medicine, industry and agriculture is set to expand in an exponential fashion. At the heart of these advancements will be the use of gene editing tools such as zinc finger nucleases, modified meganucleases, hybrid DNA/ RNA oligonucleotides, TAL effector nucleases and modified CRISPR/Cas9. Each of these tools has the ability to precisely target one specific DNA sequence within a genome and (except for DNA/ RNA oligonucleotides) to create a double-stranded DNA break. DNA repair to such breaks sometimes leads to gene knockouts or gene replacement by homologous recombination if exogenously supplied homologous DNA fragments are made available. Genome rearrangements are also possible to engineer. Creation and use of such genome rearrangements, gene knockouts and gene replacements by the plant science community is gaining significant momentum. To document some of this progress and to explore the technologyā€™s longer term potential, this review highlights present and future uses of designer nucleases to greatly expedite research with model plant systems and to engineer genes and genomes in major and minor crop species for enhanced food production

    Agrobacterium-mediated transformation of kabocha squash (Cucurbita moschata Duch) induced by wounding with aluminum borate whiskers

    Get PDF
    An efficient genetic transformation method for kabocha squash (Cucurbita moschata Duch cv. Heiankogiku) was established by wounding cotyledonary node explants with aluminum borate whiskers prior to inoculation with Agrobacterium. Adventitious shoots were induced from only the proximal regions of the cotyledonary nodes and were most efficiently induced on Murashigeā€“Skoog agar medium with 1Ā mg/L benzyladenine. Vortexing with 1% (w/v) aluminum borate whiskers significantly increased Agrobacterium infection efficiency in the proximal region of the explants. Transgenic plants were screened at the T0 generation by sGFP fluorescence, genomic PCR, and Southern blot analyses. These transgenic plants grew normally and T1 seeds were obtained. We confirmed stable integration of the transgene and its inheritance in T1 generation plants by sGFP fluorescence and genomic PCR analyses. The average transgenic efficiency for producing kabocha squashes with our method was about 2.7%, a value sufficient for practical use

    Targeted genome engineering via zinc finger nucleases

    Get PDF
    With the development of next-generation sequencing technology, ever-expanding databases of genetic information from various organisms are available to researchers. However, our ability to study the biological meaning of genetic information and to apply our genetic knowledge to produce genetically modified crops and animals is limited, largely due to the lack of molecular tools to manipulate genomes. Recently, targeted cleavage of the genome using engineered DNA scissors called zinc finger nucleases (ZFNs) has successfully supported the precise manipulation of genetic information in various cells, animals, and plants. In this review, we will discuss the development and applications of ZFN technology for genome engineering and highlight recent reports on its use in plants

    Plant genetic resources for food and agriculture: opportunities and challenges emerging from the science and information technology revolution

    Get PDF
    Over the last decade, there has been an ongoing revolution in the exploration, manipulation and synthesis of biological systems, through the development of new technologies that generate, analyse and exploit big data. Users of Plant Genetic Resources (PGR) can potentially leverage these capacities to significantly increase the efficiency and effectiveness of their efforts to conserve, discover and utilize novel qualities in PGR, and help achieve the Sustainable Development Goals (SDGs). This review advances the discussion on these emerging opportunities and discusses how taking advantage of them will require data integration and synthesis across disciplinary, organisational and international boundaries, and the formation of multi-disciplinary, international partnerships. We explore some of the institutional and policy challenges that these efforts will face, particularly how these new technologies may influence the structure and role of research for sustainable development, ownership of resources, and access and benefit sharing. We discuss potential responses to political and institutional challenges, ranging from options for enhanced structure and governance of research discovery platforms to internationally brokered benefit-sharing agreements, and identify a set of broad principles that could guide the global community as it seeks or considers solutions
    • ā€¦
    corecore