149 research outputs found

    Short-term genome stability of serial Clostridium difficile ribotype 027 isolates in an experimental gut model and recurrent human disease

    Get PDF
    Copyright: © 2013 Eyre et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedClostridium difficile whole genome sequencing has the potential to identify related isolates, even among otherwise indistinguishable strains, but interpretation depends on understanding genomic variation within isolates and individuals.Serial isolates from two scenarios were whole genome sequenced. Firstly, 62 isolates from 29 timepoints from three in vitro gut models, inoculated with a NAP1/027 strain. Secondly, 122 isolates from 44 patients (2–8 samples/patient) with mostly recurrent/on-going symptomatic NAP-1/027 C. difficile infection. Reference-based mapping was used to identify single nucleotide variants (SNVs).Across three gut model inductions, two with antibiotic treatment, total 137 days, only two new SNVs became established. Pre-existing minority SNVs became dominant in two models. Several SNVs were detected, only present in the minority of colonies at one/two timepoints. The median (inter-quartile range) [range] time between patients’ first and last samples was 60 (29.5–118.5) [0–561] days. Within-patient C. difficile evolution was 0.45 SNVs/called genome/year (95%CI 0.00–1.28) and within-host diversity was 0.28 SNVs/called genome (0.05–0.53). 26/28 gut model and patient SNVs were non-synonymous, affecting a range of gene targets.The consistency of whole genome sequencing data from gut model C. difficile isolates, and the high stability of genomic sequences in isolates from patients, supports the use of whole genome sequencing in detailed transmission investigations.Peer reviewe

    Decline of meticillin-resistant Staphylococcus aureus in Oxfordshire hospitals is strain-specific and preceded infection-control intensification

    Get PDF
    Background In the past, strains of Staphylococcus aureus have evolved, expanded, made a marked clinical impact and then disappeared over several years. Faced with rising meticillin-resistant S aureus (MRSA) rates, UK government-supported infection control interventions were rolled out in Oxford Radcliffe Hospitals NHS Trust from 2006 onwards. Methods Using an electronic Database, the authors identified isolation of MRS among 611 434 hospital inpatients admitted to acute hospitals in Oxford, UK, 1 April 1998 to 30 June 2010. Isolation rates were modelled using segmented negative binomial regression for three groups of isolates: from blood cultures, from samples suggesting invasion (eg, cerebrospinal fluid, joint fluid, pus samples) and from surface swabs (eg, from wounds). Findings MRSA isolation rates rose rapidly from 1998 to the end of 2003 (annual increase from blood cultures 23%, 95% CI 16% to 30%), and then declined. The decline accelerated from mid-2006 onwards (annual decrease post-2006 38% from blood cultures, 95% CI 29% to 45%, p=0.003 vs previous decline). Rates of meticillin-sensitive S aureus changed little by comparison, with no evidence for declines 2006 onward (p=0.40); by 2010, sensitive S aureus was far more common than MRSA (blood cultures: 2.9 vs 0.25; invasive samples 14.7 vs 2.0 per 10 000 bedstays). Interestingly, trends in isolation of erythromycin-sensitive and resistant MRSA differed. Erythromycin-sensitive strains rose significantly faster (eg, from blood cultures p=0.002), and declined significantly more slowly (p=0.002), than erythromycin-resistant strains (global p<0.0001). Bacterial typing suggests this reflects differential spread of two major UK MRSA strains (ST22/36), ST36 having declined markedly 2006-2010, with ST22 becoming the dominant MRSA strain. Conclusions MRSA isolation rates were falling before recent intensification of infection-control measures. This, together with strain-specific changes in MRSA isolation, strongly suggests that incompletely understood biological factors are responsible for the much recent variation in MRSA isolation. A major, mainly meticillin-sensitive, S aureus burden remains

    Genomic diversity affects the accuracy of bacterial single-nucleotide polymorphism-calling pipelines

    Get PDF
    Background: Accurately identifying SNPs from bacterial sequencing data is an essential requirement for using genomics to track transmission and predict important phenotypes such as antimicrobial resistance. However, most previous performance evaluations of SNP calling have been restricted to eukaryotic (human) data. Additionally, bacterial SNP calling requires choosing an appropriate reference genome to align reads to, which, together with the bioinformatic pipeline, affects the accuracy and completeness of a set of SNP calls obtained. This study evaluates the performance of 209 SNP calling pipelines using a combination of simulated data from 254 strains of 10 clinically common bacteria and real data from environmentally-sourced and genomically diverse isolates within the genera Citrobacter, Enterobacter, Escherichia and Klebsiella. Results: We evaluated the performance of 209 SNP calling pipelines, aligning reads to genomes of the same or a divergent strain. Irrespective of pipeline, a principal determinant of reliable SNP calling was reference genome selection. Across multiple taxa, there was a strong inverse relationship between pipeline sensitivity and precision, and the Mash distance (a proxy for average nucleotide divergence) between reads and reference genome. The effect was especially pronounced for diverse, recombinogenic, bacteria such as Escherichia coli, but less dominant for clonal species such as Mycobacterium tuberculosis. Conclusions: The accuracy of SNP calling for a given species is compromised by increasing intra-species diversity. When reads were aligned to the same genome from which they were sequenced, among the highest performing pipelines was Novoalign/GATK. By contrast, when reads were aligned to particularly divergent genomes, the highest-performing pipelines often employed the aligners NextGenMap or SMALT, and/or the variant callers LoFreq, mpileup or Strelka

    Selective culture enrichment and sequencing of feces to enhance detection of antimicrobial resistance genes in third-generation cephalosporin resistant Enterobacteriaceae

    Get PDF
    Metagenomic sequencing of fecal DNA can usefully characterise an individual’s intestinal resistome but is limited by its inability to detect important pathogens that may be present at low abundance, such as carbapenemase or extended-spectrum beta-lactamase producing Enterobacteriaceae. Here we aimed to develop a hybrid protocol to improve detection of resistance genes in Enterobacteriaceae by using a short period of culture enrichment prior to sequencing of DNA extracted directly from the enriched sample. Volunteer feces were spiked with carbapenemase-producing Enterobacteriaceae and incubated in selective broth culture for 6 hours before sequencing. Different DNA extraction methods were compared, including a plasmid extraction protocol to increase the detection of plasmid-associated resistance genes. Although enrichment prior to sequencing increased the detection of carbapenemase genes, the differing growth characteristics of the spike organisms precluded accurate quantification of their concentration prior to culture. Plasmid extraction increased detection of resistance genes present on plasmids, but the effects were heterogeneous and dependent on plasmid size. Our results demonstrate methods of improving the limit of detection of selected resistance mechanisms in a fecal resistome assay, but they also highlight the difficulties in using these techniques for accurate quantification and should inform future efforts to achieve this goa

    Same-day diagnostic and surveillance data for tuberculosis via whole genome sequencing of direct respiratory samples

    Get PDF
    Routine full characterization of Mycobacterium tuberculosis (TB) is culture-based, taking many weeks. Whole-genome sequencing (WGS) can generate antibiotic susceptibility profiles to inform treatment, augmented with strain information for global surveillance; such data could be transformative if provided at or near point of care. We demonstrate a low-cost DNA extraction method for TB WGS direct from patient samples. We initially evaluated the method using the Illumina MiSeq sequencer (40 smear-positive respiratory samples, obtained after routine clinical testing, and 27 matched liquid cultures). M. tuberculosis was identified in all 39 samples from which DNA was successfully extracted. Sufficient data for antibiotic susceptibility prediction was obtained from 24 (62%) samples; all results were concordant with reference laboratory phenotypes. Phylogenetic placement was concordant between direct and cultured samples. Using an 70 Illumina MiSeq/MiniSeq the workflow from patient sample to results can be completed in 44/16 hours at a reagent cost of £96/£198 per sample. We then employed a non-specific PCR-based library preparation method for sequencing on an Oxford Nanopore Technologies MinION sequencer. We applied this to cultured Mycobacterium bovis BCG strain (BCG), and to combined culture negative sputum DNA and BCG DNA. For flowcell version R9.4, the estimated turnaround time from patient to identification of BCG, detection of pyrazinamide resistance, and phylogenetic placement was 7.5 hours, with full susceptibility results 5 hours later. Antibiotic susceptibility predictions were fully concordant. A critical advantage of the MinION is the ability to continue sequencing until sufficient coverage is obtained, providing a potential solution to the problem of variable amounts of M. tuberculosis in direct samples

    A pilot study of rapid benchtop sequencing of Staphylococcus aureus and Clostridium difficile for outbreak detection and surveillance

    Get PDF
    OBJECTIVES: To investigate the prospects of newly available benchtop sequencers to provide rapid whole-genome data in routine clinical practice. Next-generation sequencing has the potential to resolve uncertainties surrounding the route and timing of person-to-person transmission of healthcare-associated infection, which has been a major impediment to optimal management. DESIGN: The authors used Illumina MiSeq benchtop sequencing to undertake case studies investigating potential outbreaks of methicillin-resistant Staphylococcus aureus (MRSA) and Clostridium difficile. SETTING: Isolates were obtained from potential outbreaks associated with three UK hospitals. PARTICIPANTS: Isolates were sequenced from a cluster of eight MRSA carriers and an associated bacteraemia case in an intensive care unit, another MRSA cluster of six cases and two clusters of C difficile. Additionally, all C difficile isolates from cases over 6 weeks in a single hospital were rapidly sequenced and compared with local strain sequences obtained in the preceding 3 years. MAIN OUTCOME MEASURE: Whole-genome genetic relatedness of the isolates within each epidemiological cluster. RESULTS: Twenty-six MRSA and 15 C difficile isolates were successfully sequenced and analysed within 5 days of culture. Both MRSA clusters were identified as outbreaks, with most sequences in each cluster indistinguishable and all within three single nucleotide variants (SNVs). Epidemiologically unrelated isolates of the same spa-type were genetically distinct (≥21 SNVs). In both C difficile clusters, closely epidemiologically linked cases (in one case sharing the same strain type) were shown to be genetically distinct (≥144 SNVs). A reconstruction applying rapid sequencing in C difficile surveillance provided early outbreak detection and identified previously undetected probable community transmission. CONCLUSIONS: This benchtop sequencing technology is widely generalisable to human bacterial pathogens. The findings provide several good examples of how rapid and precise sequencing could transform identification of transmission of healthcare-associated infection and therefore improve hospital infection control and patient outcomes in routine clinical practice

    Two Distinct Patterns of Clostridium Difficile Diversity Across Europe Indicates Contrasting Routes of Spread

    Get PDF
    Background Rates of Clostridium difficile infection vary widely across Europe, as do prevalent ribotypes. The extent of Europe-wide diversity within each ribotype is however unknown. Methods Inpatient diarrhoeal faecal samples submitted on one day in summer and winter (2012-2013) to laboratories in 482 European hospitals were cultured for C. difficile, and isolates ribotyped; those from the 10 most prevalent ribotypes were Illumina whole-genome sequenced. Pairwise single nucleotide differences (SNPs) were obtained from recombination-corrected maximum-likelihood phylogenies. Within each ribotype, country-based sequence clustering was assessed using the ratio of the median SNPs between isolates within versus across different countries using permutation tests. Time-scaled Bayesian phylogenies where used to reconstruct the historic location of each lineage. Results Sequenced isolates (n=624) were from 19 countries. Five ribotypes had within-country clustering: ribotype-356, only in Italy; ribotype-018, predominantly in Italy; ribotype-176, with distinct Czech and German clades; ribotype-001/072, including distinct German, Slovakian, and Spanish clades; and ribotype-027, with multiple predominantly country-specific clades including in Hungary, Italy, Germany, Romania and Poland. By contrast, we found no within-country clustering for ribotypes 078, 015, 002, 014, and 020, consistent with a Europe-wide distribution. Fluoroquinolone-resistance was significantly more common in within-country clustered ribotypes (p=0.009). Fluoroquinolone-resistant isolates were also more tightly geographically clustered, median (IQR) 43 (0-213) miles between each isolate and the most closely genetically-related isolate vs. 421 (204-680) in non-resistant pairs (p<0.001). Conclusions Two distinct patterns of C. difficile ribotype spread were observed, consistent with either predominantly healthcare-associated acquisition or Europe-wide dissemination via other routes/sources, e.g. the food chain

    Relationship between bacterial strain type, host biomarkers, and mortality in clostridium difficile infection

    Get PDF
    Background: Despite substantial interest in biomarkers, their impact on clinical outcomes and variation with bacterial strain has rarely been explored using integrated databases. Methods: From September 2006 to May 2011, strains isolated from Clostridium difficile toxin enzyme immunoassay (EIA)-positive fecal samples from Oxfordshire, United Kingdom (approximately 600 000 people) underwent multilocus sequence typing. Fourteen-day mortality and levels of 15 baseline biomarkers were compared between consecutive C. difficile infections (CDIs) from different clades/sequence types (STs) and EIA-negative controls using Cox and normal regression adjusted for demographic/clinical factors. Results: Fourteen-day mortality was 13% in 2222 adults with 2745 EIA-positive samples (median, 78 years) vs 5% in 20 722 adults with 27 550 EIA-negative samples (median, 74 years) (absolute attributable mortality, 7.7%; 95% CI, 6.4%-9.0%). Mortality was highest in clade 5 CDIs (25% [16 of 63]; polymerase chain reaction (PCR) ribotype 078/ST 11), then clade 2 (20% [111 of 560]; 99% PCR ribotype 027/ST 1) versus clade 1 (12% [137 of 1168]; adjusted P <. 0001). Within clade 1, 14-day mortality was only 4% (3 of 84) in ST 44 (PCR ribotype 015) (adjusted P =. 05 vs other clade 1). Mean baseline neutrophil counts also varied significantly by genotype: 12.4, 11.6, and 9.5 × 109 neutrophils/L for clades 5, 2 and 1, respectively, vs 7.0 × 109 neutrophils/L in EIA-negative controls (P <. 0001) and 7.9 × 109 neutrophils/L in ST 44 (P =. 08). There were strong associations between C. difficile-type-specific effects on mortality and neutrophil/white cell counts (rho = 0.48), C-reactive-protein (rho = 0.43), eosinophil counts (rho =-0.45), and serum albumin (rho =-0.47). Biomarkers predicted 30%-40% of clade-specific mortality differences. Conclusions: C. difficile genotype predicts mortality, and excess mortality correlates with genotype-specific changes in biomarkers, strongly implicating inflammatory pathways as a major influence on poor outcome after CDI. PCR ribotype 078/ST 11 (clade 5) leads to severe CDI; thus ongoing surveillance remains essential

    Comparison of Control of Clostridium difficile Infection in Six English Hospitals Using Whole-Genome Sequencing

    Get PDF
    Background: Variation in Clostridium difficile infection (CDI) rates between healthcare institutions suggests overall incidence could be reduced if the lowest rates could be achieved more widely. Methods: We investigated whether whole-genome sequencing (WGS) of consecutive C. difficile isolates from six English hospitals over one year (2013-14) could be used to assess infection control performance. Fecal samples with a positive initial screen for C. difficile (GDH or toxin-PCR) were cultured and sequenced. Within each hospital, we estimated the proportion of cases plausibly acquired from previous cases, defined by an isolate ≤2 single nucleotide polymorphisms different from a previous isolate in the last 90-days. Results: 851/971(87.6%) sequenced culture-positive samples were toxigenic, and 451(46.4%) were fecal-toxin-positive. 128/652(20%,95%CI 17-23%) toxigenic isolates >90-days after the study started were genetically-linked to a prior patient’s isolate from the previous 90-days. Hospital-2 had the fewest linked isolates, 7/105(7%,3-13%), hospital-1 an intermediate proportion, 9/70(13%,6-23%), while hospitals 3-6 had similar proportions of linked isolates (22-26%) (p≤0.002 comparing hospital-2 vs 3-6). Results were similar adjusting for locally-circulating ribotypes. Adjusting for hospital, ribotype-027 had the highest proportion of linked isolates (57%, 95%CI 29-81%). Fecal-toxin-positive and toxin-negative patients were similarly infectious in terms of being a potential transmission donor, OR=1.01(0.68-1.49,p=0.97). There was no association between the estimated proportion of cases linked to a previous case within 90-days and testing rates (p=0.60). Conclusions: WGS can be used to identify varying rates of C. difficile transmission in different locations, and offers the potential to allow targeted efforts to reduce CDI incidence
    corecore