289 research outputs found
The WHO European framework for action to achieve the highest attainable standard of health for persons with disabilities 2022–2030
There are approximately 135 million persons with disabilities in the WHO European Region. In order to address health inequities experienced by this population, Member States and WHO/Europe developed the ‘WHO European framework for action to achieve the highest attainable standard of health for persons with disabilities 2022–2030’, in close cooperation with organisations of persons with disabilities. The Framework, with its accompanying Resolution, was adopted by all 53 Member States in September 2022.
The Framework is aligned with the core priorities of the WHO European Programme of Work 2020-2025, that is, achieving universal health coverage, protecting against health emergencies, and promoting health and well-being. It consists of four objectives, 13 targets, and 20 indicators that act as measures of progress and success, and as drivers for policy action and a roadmap for Member States towards a disability-inclusive health sector.
The Framework is expected to have a significant impact on the health and well-being of all in the Region, and especially persons with disabilities, as it will advance inclusive health systems across the Region. Inclusive health sectors will aid towards the achievement of the Sustainable Development Goals, the protection of the human rights of persons with disabilities, and the promotion of their health
The Sloan Digital Sky Survey Reverberation Mapping Project: Technical Overview
The Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM) is a
dedicated multi-object RM experiment that has spectroscopically monitored a
sample of 849 broad-line quasars in a single 7 deg field with the SDSS-III
BOSS spectrograph. The RM quasar sample is flux-limited to i_psf=21.7 mag, and
covers a redshift range of 0.1<z<4.5. Optical spectroscopy was performed during
2014 Jan-Jul dark/grey time, with an average cadence of ~4 days, totaling more
than 30 epochs. Supporting photometric monitoring in the g and i bands was
conducted at multiple facilities including the CFHT and the Steward Observatory
Bok telescopes in 2014, with a cadence of ~2 days and covering all lunar
phases. The RM field (RA, DEC=14:14:49.00, +53:05:00.0) lies within the CFHT-LS
W3 field, and coincides with the Pan-STARRS 1 (PS1) Medium Deep Field MD07,
with three prior years of multi-band PS1 light curves. The SDSS-RM 6-month
baseline program aims to detect time lags between the quasar continuum and
broad line region (BLR) variability on timescales of up to several months (in
the observed frame) for ~10% of the sample, and to anchor the time baseline for
continued monitoring in the future to detect lags on longer timescales and at
higher redshift. SDSS-RM is the first major program to systematically explore
the potential of RM for broad-line quasars at z>0.3, and will investigate the
prospects of RM with all major broad lines covered in optical spectroscopy.
SDSS-RM will provide guidance on future multi-object RM campaigns on larger
scales, and is aiming to deliver more than tens of BLR lag detections for a
homogeneous sample of quasars. We describe the motivation, design and
implementation of this program, and outline the science impact expected from
the resulting data for RM and general quasar science.Comment: 25 pages, submitted to ApJS; project website at http://www.sdssrm.or
VESPA: software to facilitate genomic annotation of prokaryotic organisms through integration of proteomic and transcriptomic data
<p>Abstract</p> <p>Background</p> <p>The procedural aspects of genome sequencing and assembly have become relatively inexpensive, yet the full, accurate structural annotation of these genomes remains a challenge. Next-generation sequencing transcriptomics (RNA-Seq), global microarrays, and tandem mass spectrometry (MS/MS)-based proteomics have demonstrated immense value to genome curators as individual sources of information, however, integrating these data types to validate and improve structural annotation remains a major challenge. Current visual and statistical analytic tools are focused on a single data type, or existing software tools are retrofitted to analyze new data forms. We present Visual Exploration and Statistics to Promote Annotation (VESPA) is a new interactive visual analysis software tool focused on assisting scientists with the annotation of prokaryotic genomes though the integration of proteomics and transcriptomics data with current genome location coordinates.</p> <p>Results</p> <p>VESPA is a desktop Java™ application that integrates high-throughput proteomics data (peptide-centric) and transcriptomics (probe or RNA-Seq) data into a genomic context, all of which can be visualized at three levels of genomic resolution. Data is interrogated via searches linked to the genome visualizations to find regions with high likelihood of mis-annotation. Search results are linked to exports for further validation outside of VESPA or potential coding-regions can be analyzed concurrently with the software through interaction with BLAST. VESPA is demonstrated on two use cases (<it>Yersinia pestis </it>Pestoides F and <it>Synechococcus </it>sp. PCC 7002) to demonstrate the rapid manner in which mis-annotations can be found and explored in VESPA using either proteomics data alone, or in combination with transcriptomic data.</p> <p>Conclusions</p> <p>VESPA is an interactive visual analytics tool that integrates high-throughput data into a genomic context to facilitate the discovery of structural mis-annotations in prokaryotic genomes. Data is evaluated via visual analysis across multiple levels of genomic resolution, linked searches and interaction with existing bioinformatics tools. We highlight the novel functionality of VESPA and core programming requirements for visualization of these large heterogeneous datasets for a client-side application. The software is freely available at <url>https://www.biopilot.org/docs/Software/Vespa.php</url>.</p
The Cepheid Distance to the Narrow-Line Seyfert 1 Galaxy NGC 4051
We derive a distance of ~Mpc (~mag) to
the archetypal narrow-line Seyfert 1 galaxy NGC 4051 based on Cepheid
Period--Luminosity relations and new Hubble Space Telescope multiband imaging.
We identify 419 Cepheid candidates and estimate the distance at both optical
and near-infrared wavelengths using subsamples of precisely-photometered
variables (123 and 47 in the optical and near-infrared subsamples,
respectively). We compare our independent photometric procedures and
distance-estimation methods to those used by the SH0ES team and find agreement
to 0.01~mag. The distance we obtain suggests an Eddington ratio for NGC 4051, typical of narrow-line Seyfert 1 galaxies, unlike
the seemingly-odd value implied by previous distance estimates. We derive a
peculiar velocity of ~km~s for NGC 4051, consistent with the
overall motion of the Ursa Major Cluster in which it resides. We also revisit
the energetics of the NGC 4051 nucleus, including its outflow and mass
accretion rates.Comment: 15 pages, 12 figures, 6 tables, accepted for publication in Ap
Velocity-resolved Reverberation Mapping of Five Bright Seyfert 1 Galaxies
We present the first results from a reverberation-mapping campaign undertaken during the first half of 2012, with additional data on one active galactic nucleus (AGN) (NGC 3227) from a 2014 campaign. Our main goals are (1) to determine the black hole masses from continuum-Hβ reverberation signatures, and (2) to look for velocity-dependent time delays that might be indicators of the gross kinematics of the broad-line region. We successfully measure Hβ time delays and black hole masses for five AGNs, four of which have previous reverberation mass measurements. The values measured here are in agreement with earlier estimates, though there is some intrinsic scatter beyond the formal measurement errors. We observe velocity-dependent Hβ lags in each case, and find that the patterns have changed in the intervening five years for three AGNs that were also observed in 2007
Recommended from our members
Daily volume, intraday and overnight returns for volatility prediction: profitability or accuracy?
This article presents a comprehensive analysis of the relative ability of three information sets—daily trading volume, intraday returns and overnight returns—to predict equity volatility. We investigate the extent to which statistical accuracy of one-day-ahead forecasts translates into economic gains for technical traders. Various profitability criteria and utility-based switching fees indicate that the largest gains stem from combining historical daily returns with volume information. Using common statistical loss functions, the largest degree of predictive power is found instead in intraday returns. Our analysis thus reinforces the view that statistical significance does not have a direct mapping onto economic value. As a byproduct, we show that buying the stock when the forecasted volatility is extremely high appears largely profitable, suggesting a strong return-risk relationship in turbulent conditions
Pancreatic hyperamylasemia during acute gastroenteritis: incidence and clinical relevance
BACKGROUND: Many case reports of acute pancreatitis have been reported but, up to now, pancreatic abnormalities during acute gastroenteritis have not been studied prospectively. OBJECTIVES: To evaluate the incidence and the clinical significance of hyperamylasemia in 507 consecutive adult patients with acute gastroenteritis. METHODS: The clinical significance of hyperamylasemia, related predisposing factors and severity of gastroenteritis were assessed. RESULTS: Hyperamylasemia was detected in 10.2 % of patients studied. Although amylasemia was found over four times the normal values in three cases, the clinical features of acute pancreatitis were recorded in only one case (0.1%). Hyperamylasemia was more likely (17%) where a microorganism could be identified in the stools (p < 0.01). Among patients with positive stool samples, Salmonella spp. and in particular S. enteritidis, was the microorganism most frequently associated with hyperamylasemia [17/84 (20.2 %) and 10/45 (22.2%), respectively], followed by Rotavirus, Clostridium difficile and Campylobacter spp. Patients with hyperamylasemia had more severe gastroenteritis with an increased incidence of fever (80 % vs 50.6 %, O.R. 3.0; P < 0.01), dehydration (18% vs 8.5%; O.R. 2.5; P < 0.05), and a higher mean number of evacuations per day (9.2 vs 7.5; P < 0.05) than those with amylasemia in the normal range. Hyperamylasemia was significantly associated with cholelithiasis, (30.0 % vs 10.7%, O.R. 3.5; P < 0.01) and chronic gastritis or duodenal ulceration (22.0 % vs 10.2%, O.R. 2.4, P < 0.05). CONCLUSIONS: Hyperamylasemia is relatively frequent, and is associated with severe gastroenteritis. However, acute pancreatitis in the setting of acute gastroenteritis, is a rare event
In Vivo Conditions to Identify Prkci Phosphorylation Targets Using the Analog-Sensitive Kinase Method in Zebrafish
Protein kinase C iota is required for various cell biological processes including epithelial tissue polarity and organ morphogenesis. To gain mechanistic insight into different roles of this kinase, it is essential to identify specific substrate proteins in their cellular context. The analog-sensitive kinase method provides a powerful tool for the identification of kinase substrates under in vivo conditions. However, it has remained a major challenge to establish screens based on this method in multicellular model organisms. Here, we report the methodology for in vivo conditions using the analog-sensitive kinase method in a genetically-tractable vertebrate model organism, the zebrafish. With this approach, kinase substrates can uniquely be labeled in the developing zebrafish embryo using bulky ATPγS analogs which results in the thiophosphorylation of substrates. The labeling of kinase substrates with a thiophosphoester epitope differs from phosphoesters that are generated by all other kinases and allows for an enrichment of thiophosphopeptides by immunoaffinity purification. This study provides the foundation for using the analog-sensitive kinase method in the context of complex vertebrate development, physiology, or disease
Recommended from our members
A Community-Based Approach to Developing a Mobile Device for Measuring Ambient Air Exposure, Location, and Respiratory Health
In west Eugene (Oregon), community research indicates residents are disproportionately exposed to industrial air pollution and exhibit increased asthma incidence. In Carroll County (Ohio), recent increases in unconventional natural gas drilling sparked air quality concerns. These community concerns led to the development of a prototype mobile device to measure personal chemical exposure, location, and respiratory function. Working directly with the environmental justice (EJ) communities, the prototype was developed to (1) meet the needs of the community and; (2) evaluate the use in EJ communities. The prototype was evaluated in 3 community focus groups (n=25) to obtain feedback on the prototype and feasibility study design to evaluate the efficacy of the device to address community concerns. Focus groups were recorded and qualitatively analyzed with discrete feedback tabulated for further refinement. The prototype was improved by community feedback resulting in 8 alterations/additions to software and instructional materials. Overall, focus group participants were supportive of the device and believed it would be a useful environmental health tool. The use of focus groups ensured that community members were engaged in the research design and development of a novel environmental health tool. We found that community-based research strategies resulted in a refined device as well as relevant research questions, specific to the EJ community needs and concerns
From pole to pole : 33 years of physical oceanography onboard R/V Polarstern
Measuring temperature and salinity profiles in the world's oceans is crucial to understanding ocean dynamics and its influence on the heat budget, the water cycle, the marine environment and on our climate. Since 1983 the German research vessel and icebreaker Polarstern has been the platform of numerous CTD (conductivity, temperature, depth instrument) deployments in the Arctic and the Antarctic. We report on a unique data collection spanning 33 years of polar CTD data. In total 131 data sets (1 data set per cruise leg) containing data from 10 063 CTD casts are now freely available at doi: 10.1594/PANGAEA.860066. During this long period five CTD types with different characteristics and accuracies have been used. Therefore the instruments and processing procedures (sensor calibration, data validation, etc.) are described in detail. This compilation is special not only with regard to the quantity but also the quality of the data -the latter indicated for each data set using defined quality codes. The complete data collection includes a number of repeated sections for which the quality code can be used to investigate and evaluate long-term changes. Beginning with 2010, the salinity measurements presented here are of the highest quality possible in this field owing to the introduction of the OPTIMARE Precision Salinometer.Peer reviewe
- …