514 research outputs found

    The Spiders of South Dakota

    Get PDF
    Spiders constitute the order of Araneida, which is one of the principal divisions of the class Arachnida. The Arachnida also includes scorpions, whipscorpions, pseudosscorpions, harvestmen, mites, and ticks. Some of the distinguishing characteristics of the Araneida are as follows: The head and thorax are consolidated into a cephalothorax. The abdomen is unsegmented and joined to the cephalothorax by a short narrow stalk. There are six pairs of appendages on the cephalothorax: chelicerae, pedipalps with heir basal masticulatory endites, and four pairs of walking legs

    Recent Developments

    Get PDF
    Context. Tracing nuclear inflows and outflows in active galactic nuclei (AGNs), determining the mass of gas involved in them, and their impact on the host galaxy and nuclear black hole requires 3D imaging studies of both the ionized and molecular gas. Aims. We map the distribution and kinematics of molecular and ionized gas in a sample of active galaxies to quantify the nuclear inflows and outflows. Here, we analyze the nuclear kinematics of NGC 1566 via ALMA observations of the CO J:2-1 emission at 24 pc spatial and ∌2.6 km s−1 spectral resolution, and Gemini-GMOS/IFU observations of ionized gas emission lines and stellar absorption lines at similar spatial resolution, and 123 km s−1 of intrinsic spectral resolution. Methods. The morphology and kinematics of stellar, molecular (CO), and ionized ([N II]) emission lines are compared to the expectations from rotation, outflows, and streaming inflows. Results. While both ionized and molecular gas show rotation signatures, there are significant non-circular motions in the innermost 200 pc and along spiral arms in the central kpc (CO). The nucleus shows a double-peaked CO profile (full width at zero intensity of 200 km s−1), and prominent (∌80 km s−1) blue- and redshifted lobes are found along the minor axis in the inner arcseconds. Perturbations by the large-scale bar can qualitatively explain all features in the observed velocity field. We thus favor the presence of a molecular outflow in the disk with true velocities of ∌180 km s−1 in the nucleus and decelerating to 0 by ∌72 pc. The implied molecular outflow rate is 5.6 M⊙ yr−1, with this gas accumulating in the nuclear 2″ arms. The ionized gas kinematics support an interpretation of a similar but more spherical outflow in the inner 100 pc, with no signs of deceleration. There is some evidence of streaming inflows of ∌50 km s−1 along specific spiral arms, and the estimated molecular mass inflow rate, ∌0.1 M⊙ yr−1, is significantly higher than the SMBH accretion rate (áč = 4.8 × 10−5 M⊙ yr−1)

    The Role of Magnetic Resonance Imaging to Inform Clinical Decision-Making in Acute Spinal Cord Injury:A Systematic Review and Meta-Analysis

    Get PDF
    The clinical indications and added value of obtaining MRI in the acute phase of spinal cord injury (SCI) remain controversial. This review aims to critically evaluate evidence regarding the role of MRI to influence decision-making and outcomes in acute SCI. A systematic review and meta-analysis were performed according to PRISMA methodology to identify studies that address six key questions (KQs) regarding diagnostic accuracy, frequency of abnormal findings, frequency of altered decision-making, optimal timing, and differences in outcomes related to obtaining an MRI in acute SCI. A total of 32 studies were identified that addressed one or more KQs. MRI showed no adverse events in 156 patients (five studies) and frequently identified cord compression (70%, 12 studies), disc herniation (43%, 16 studies), ligamentous injury (39%, 13 studies), and epidural hematoma (10%, two studies), with good diagnostic accuracy (seven comparative studies) except for fracture detection. MRI findings often altered management, including timing of surgery (78%, three studies), decision to operate (36%, 15 studies), and surgical approach (29%, nine studies). MRI may also be useful to determine the need for instrumentation (100%, one study), which levels to decompress (100%, one study), and if reoperation is needed (34%, two studies). The available literature consistently concluded that MRI was useful prior to surgical treatment (13 studies) and after surgery to assess decompression (two studies), but utility before/after closed reduction of cervical dislocations was unclear (three studies). One study showed improved outcomes with an MRI-based protocol but had a high risk of bias. Heterogeneity was high for most findings (I(2) > 0.75). MRI is safe and frequently identifies findings alter clinical management in acute SCI, although direct evidence of its impact on outcomes is lacking. MRI should be performed before and after surgery, when feasible, to facilitate improved clinical decision-making. However, further research is needed to determine its optimal timing, effect on outcomes, cost-effectiveness, and utility before and after closed reduction

    On the Predicted and Observed Color Boundaries of the RR Lyrae Instability Strip as a Function of Metallicity

    Full text link
    The purpose of the paper is to predict the temperature at the fundamental blue edge (FBE) of the instability strip for RR Lyrae (RRL) variables from the pulsation equation that relates temperature to period, luminosity, and mass. Modern data for the correlations between period, luminosity, and metallicity at the FBE for field and cluster RRL are used for the temperature calculation. The predicted temperatures are changed to B-V colors using an adopted color transformation. The predicted temperatures at the FBE become hotter as [Fe/H] changes from 0 to -1.5, and thereafter cooler as the metallicity decreases to -2.5 and beyond. The temperature range over this interval of metallicity is Δ\Deltalog TeT_e = 0.04, or 640 K at 6900K. The predicted color variation is at the level of 0.03 mag in B-V. The predictions are compared with the observed RRL colors at the FBE for both the field and cluster variables, showing general agreement at the level of 0.02 mag in (B-V)o_o, which, however, is the uncertainty of the reddening corrections. The focus of the problem is then reversed by fitting a better envelope to the observed FBE relation between color and metallicity for metallicities smaller than -1.8 which, when inserted in the pulsation equation, gives a non-linear calibration ....Comment: 34 pages, 11 figures, 2 tables. To appear in March 2006 A

    A Climate Index Optimized for Longshore Sediment Transport Reveals Interannual and Multidecadal Littoral Cell Rotations

    Get PDF
    A recent 35-year endpoint shoreline change analysis revealed significant counterclockwiserotations occurring in north-central Oregon, USA, littoral cells that extend 10s of kilometers in length.While the potential for severe El Niños to contribute to littoral cell rotations at seasonal to interannual scalewas previously recognized, the dynamics resulting in persistent (multidecadal) rotation were unknown,largely due to a lack of historical wave conditions extending back multiple decades and the difficulty ofseparating the timescales of shoreline variability in a high energy region. This study addresses this questionby (1) developing a statistical downscaling framework to characterize wave conditions relevant for longshoresediment transport during data-poor decades and (2) applying a one-line shoreline change model toquantitatively assess the potential for such large embayed beaches to rotate. A climateINdex was optimizedto capture variability in longshore wave power as a proxy for potentialLOngshore Sediment Transport(LOST_IN), and a procedure was developed to simulate many realizations of potential wave conditions fromthe index. Waves were transformed dynamically with Simulating Waves Nearshore to the nearshore asinputs to a one-line model that revealed shoreline rotations of embayed beaches at multiple time and spatialscales not previously discernible from infrequent observations. Model results indicate that littoral cellsrespond to both interannual and multidecadal oscillations, producing comparable shoreline excursions toextreme El Niño winters. The technique quantitatively relates morphodynamic forcing to specific climatepatterns and has the potential to better identify and quantify coastal variability on timescales relevant to achanging climate.This work would not have been possible without funding from the NSF Graduate Research Fellowship Program (GRFP) through NSF grant DGE-1314109, the Coastal and Ocean Climate Applications (COCA) program through NOAA grant NA15OAR4310243, NOAA’s Regional Integrated Sciences and Assessments Program (RISA), under NOAA grant NA15OAR4310145, and the Spanish Ministerio de EducaciĂłn Cultura y Deporte FPU (FormaciĂłn del Profesorado Universitario) studentship BOE-A-2013-12235. Beach survey data collection undertaken on the Oregon coast was made possible by the Northwest Association of Networked Ocean Observing Systems (NANOOS) through NOAA grant NA16NOS0120019

    Children’s friendships in diverse primary schools: teachers and the processes of policy enactment

    Get PDF
    Drawing on data from a project exploring children's and adults’ friendships across social class and ethnic difference, this paper focuses on the enactment of national and institutional policy around children’s friendships as realized in three primary schools in diverse urban areas in London. Through a focus on the way in which social and emotional learning (SEL) and teachers’ understandings of children’s friendships seek to govern children’s friendship behaviours, we turn to Foucault’s work to explore how power shapes relations between policy frameworks and teachers’ practices, and between those who teach and those who are taught. We discuss the disciplinary potential of SEL and teachers’ ‘common sense’ understandings of children’s friendships, but conclude by noting possibilities for teachers to create spaces in which all children can safely explore the nature of friendships

    Genome-wide promoter analysis of histone modifications in human monocyte-derived antigen presenting cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Monocyte-derived macrophages and dendritic cells (DCs) are important in inflammatory processes and are often used for immunotherapeutic approaches. Blood monocytes can be differentiated into macrophages and DCs, which is accompanied with transcriptional changes in many genes, including chemokines and cell surface markers.</p> <p>Results</p> <p>To study the chromatin modifications associated with this differentiation, we performed a genome wide analysis of histone H3 trimethylation on lysine 4 (H3K4me3) and 27 (H3K27me3) as well as acetylation of H3 lysines (AcH3) in promoter regions. We report that both H3K4me3 and AcH3 marks significantly correlate with transcriptionally active genes whereas H3K27me3 mark is associated with inactive gene promoters. During differentiation, the H3K4me3 levels decreased on monocyte-specific CD14, CCR2 and CX3CR1 but increased on DC-specific TM7SF4/DC-STAMP, TREM2 and CD209/DC-SIGN genes. Genes associated with phagocytosis and antigen presentation were marked by H3K4me3 modifications. We also report that H3K4me3 levels on clustered chemokine and surface marker genes often correlate with transcriptional activity.</p> <p>Conclusion</p> <p>Our results provide a basis for further functional correlations between gene expression and histone modifications in monocyte-derived macrophages and DCs.</p

    Direct Regulation of Striated Muscle Myosins by Nitric Oxide and Endogenous Nitrosothiols

    Get PDF
    , both through activation of guanylyl cyclase and through modification of cysteines in proteins to yield S-nitrosothiols. While NO affects the contractile apparatus directly, the identities of the target myofibrillar proteins remain unknown. Here we report that nitrogen oxides directly regulate striated muscle myosins..These data show that nitrosylation signaling acts as a molecular “gear shift” for myosin—an altogether novel mechanism by which striated muscle and cellular biomechanics may be regulated

    Acute myeloid leukemia of donor origin after allogeneic stem cell transplantation from a sibling who harbors germline XPD and XRCC3 homozygous polymorphisms

    Get PDF
    A 54-year-old woman was diagnosed with infiltrative ductal breast carcinoma. Two years after treatment, the patient developed an acute myeloid leukemia (AML) which harbored del(11q23) in 8% of the blast cells. The patient was submitted for allogeneic stem cell transplantation (aSCT) from her HLA-compatible sister. Ten months after transplantation, she relapsed with an AML with basophilic maturation characterized by CD45low CD33high, CD117+, CD13-/+, HLA Drhigh, CD123high, and CD203c+ blast cells lacking expression of CD7, CD10, CD34, CD15, CD14, CD56, CD36, CD64, and cytoplasmic tryptase. Karyotype analysis showed the emergence of a new clone with t(2;14) and FISH analysis indicated the presence of MLL gene rearrangement consistent with del(11q23). Interestingly, AML blast cell DNA tested with microsatellite markers showed the same pattern as the donor's, suggesting that this AML emerged from donor cells. Additionally, polymorphisms of the XPA, XPD, XRCC1, XRCC3 and RAD51 DNA repair genes revealed three unfavorable alleles with low DNA repair capacity
    • 

    corecore