585 research outputs found

    The prolate-to-oblate shape transition of phospholipid vesicles in response to frequency variation of an AC electric field can be explained by the dielectric anisotropy of a phospholipid bilayer

    Full text link
    The external electric field deforms flaccid phospholipid vesicles into spheroidal bodies, with the rotational axis aligned with its direction. Deformation is frequency dependent: in the low frequency range (~ 1 kHz), the deformation is typically prolate, while increasing the frequency to the 10 kHz range changes the deformation to oblate. We attempt to explain this behaviour with a theoretical model, based on the minimization of the total free energy of the vesicle. The energy terms taken into account include the membrane bending energy and the energy of the electric field. The latter is calculated from the electric field via the Maxwell stress tensor, where the membrane is modelled as anisotropic lossy dielectric. Vesicle deformation in response to varying frequency is calculated numerically. Using a series expansion, we also derive a simplified expression for the deformation, which retains the frequency dependence of the exact expression and may provide a better substitute for the series expansion used by Winterhalter and Helfrich, which was found to be valid only in the limit of low frequencies. The model with the anisotropic membrane permittivity imposes two constraints on the values of material constants: tangential component of dielectric permittivity tensor of the phospholipid membrane must exceed its radial component by approximately a factor of 3; and the membrane conductivity has to be relatively high, approximately one tenth of the conductivity of the external aqueous medium.Comment: 17 pages, 6 figures; accepted for publication in J. Phys.: Condens. Matte

    Non-linear rheology of active particle suspensions: Insights from an analytical approach

    Full text link
    We consider active suspensions in the isotropic phase subjected to a shear flow. Using a set of extended hydrodynamic equations we derive a variety of {\em analytical} expressions for rheological quantities such as shear viscosity and normal stress differences. In agreement to full-blown numerical calculations and experiments we find a shear thickening or -thinning behaviour depending on whether the particles are contractile or extensile. Moreover, our analytical approach predicts that the normal stress differences can change their sign in contrast to passive suspensions.Comment: 11 pages, 10 figures, appear in PR

    Favorable outcome of early treatment of new onset child and adolescent migraine-implications for disease modification.

    Get PDF
    There is evidence that the prevalence of migraine in children and adolescents may be increasing. Current theories of migraine pathophysiology in adults suggest activation of central cortical and brainstem pathways in conjunction with the peripheral trigeminovascular system, which ultimately results in release of neuropeptides, facilitation of central pain pathways, neurogenic inflammation surrounding peripheral vessels, and vasodilatation. Although several risk factors for frequent episodic, chronic, and refractory migraine have been identified, the causes of migraine progression are not known. Migraine pathophysiology has not been fully evaluated in children. In this review, we will first discuss the evidence that early therapeutic interventions in the child or adolescent new onset migraineur, may halt or limit progression and disability. We will then review the evidence suggesting that many adults with chronic or refractory migraine developed their migraine as children or adolescents and may not have been treated adequately with migraine-specific therapy. Finally, we will show that early, appropriate and optimal treatment of migraine during childhood and adolescence may result in disease modification and prevent progression of this disease

    The challenges of the expanded availability of genomic information: an agenda-setting paper

    Get PDF
    Rapid advances in microarray and sequencing technologies are making genotyping and genome sequencing more affordable and readily available. There is an expectation that genomic sequencing technologies improve personalized diagnosis and personalized drug therapy. Concurrently, provision of direct-to-consumer genetic testing by commercial providers has enabled individuals’ direct access to their genomic data. The expanded availability of genomic data is perceived as influencing the relationship between the various parties involved including healthcare professionals, researchers, patients, individuals, families, industry, and government. This results in a need to revisit their roles and responsibilities. In a 1-day agenda-setting meeting organized by the COST Action IS1303 “Citizen’s Health through public-private Initiatives: Public health, Market and Ethical perspectives,” participants discussed the main challenges associated with the expanded availability of genomic information, with a specific focus on public-private partnerships, and provided an outline from which to discuss in detail the identified challenges. This paper summarizes the points raised at this meeting in five main parts and highlights the key cross-cutting themes. In light of the increasing availability of genomic information, it is expected that this paper will provide timely direction for future research and policy making in this area.Funding Deborah Mascalzoni is supported under Grant Agreement number 305444. Álvaro Mendes is supported by the FCT—The Portuguese Foundation for Science and Technology under postdoctoral grant SFRH/BPD/88647/2012. Isabelle Budin-Ljøsne receives support from the National Research and Innovation Platform for Personalized Cancer Medicine funded by The Research Council of Norway (NFR BIOTEK2021/ES495029) and Biobank Norway funded by The Research Council of Norway—grant number 245464. Heidi Carmen Howard is partly supported by supported by the Swedish Foundation for Humanities and Social Science under grant M13-0260:1), the Biobanking and Molecular Resource Infrastructure of Sweden (BBMRI.se) and the BBMRI-ERIC. Brígida Riso is supported by the Portuguese Foundation for Science and Technology (FCT) under the PhD grant SFRH/BD/100779/2014. Heidi Beate Bentzen receives support from the project Legal Regulation of Information Processing relating to Personalized Cancer Medicine funded by The Research Council of Norway BIOTEK2021/238999

    Integrative transcriptomic analysis in human and mouse model of anaphylaxis identifies gene signatures associated with cell movement, migration and neuroinflammatory signalling

    Get PDF
    Background: Anaphylaxis is an acute life-threatening allergic reaction and a concern at a global level; therefore, further progress in understanding the underlying mechanisms and more effective strategies for diagnosis, prevention and management are needed. Objective: We sought to identify the global architecture of blood transcriptomic features of anaphylaxis by integrating expression data from human patients and mouse model of anaphylaxis. Methods: Bulk RNA-sequencings of peripheral whole blood were performed in: i) 14 emergency department (ED) patients with acute anaphylaxis, predominantly to Hymenoptera venom, ii) 11 patients with peanut allergy undergoing double-blind, placebo-controlled food challenge (DBPCFC) to peanut, iii) murine model of IgE-mediated anaphylaxis. Integrative characterisation of differential gene expression, immune cell-type-specific gene expression profiles, and functional and pathway analysis was undertaken. Results: 1023 genes were commonly and significantly dysregulated during anaphylaxis in ED and DBPCFC patients; of those genes, 29 were also dysregulated in the mouse model. Cell-type-specific gene expression profiles showed a rapid downregulation of blood basophil and upregulation of neutrophil signature in ED and DBPCFC patients and the mouse model, but no consistent and/or significant differences were found for other blood cells. Functional and pathway analysis demonstrated that human and mouse blood transcriptomic signatures of anaphylaxis follow trajectories of upregulation of cell movement, migration and neuroinflammatory signalling, and downregulation of lipid activating nuclear receptors signalling. Conclusion: Our study highlights the matched and extensive blood transcriptomic changes and suggests the involvement of discrete cellular components and upregulation of migration and neuroinflammatory pathways during anaphylaxis

    Towards Better Territorial Governance in Europe. A guide for practitioners, policy and decision makers based on contributions from the ESPON TANGO Project

    Get PDF
    Guides help you do things. You turn to them when you need to find out how to solve a problem. They are a form of knowledge transfer, written by experts but in a way that is accessible and helpful to a wide group of users. This Guide was written by the researchers on the ESPON applied research study of Territorial Approaches to New Governance (TANGO). It aims to help those persons and institutions that are delivering territorial governance across Europ

    RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus

    Get PDF
    Epstein-Barr virus (EBV) immortalizes resting B-cells and is a key etiologic agent in the development of numerous cancers. The essential EBV-encoded protein EBNA 2 activates the viral C promoter (Cp) producing a message of ~120 kb that is differentially spliced to encode all EBNAs required for immortalization. We have previously shown that EBNA 2-activated transcription is dependent on the activity of the RNA polymerase II (pol II) C-terminal domain (CTD) kinase pTEFb (CDK9/cyclin T1). We now demonstrate that Cp, in contrast to two shorter EBNA 2-activated viral genes (LMP 1 and 2A), displays high levels of promoter-proximally stalled pol II despite being constitutively active. Consistent with pol II stalling, we detect considerable pausing complex (NELF/DSIF) association with Cp. Significantly, we observe substantial Cp-specific pTEFb recruitment that stimulates high-level pol II CTD serine 2 phosphorylation at distal regions (up to +75 kb), promoting elongation. We reveal that Cp-specific pol II accumulation is directed by DNA sequences unfavourable for nucleosome assembly that increase TBP access and pol II recruitment. Stalled pol II then maintains Cp nucleosome depletion. Our data indicate that pTEFb is recruited to Cp by the bromodomain protein Brd4, with polymerase stalling facilitating stable association of pTEFb. The Brd4 inhibitor JQ1 and the pTEFb inhibitors DRB and Flavopiridol significantly reduce Cp, but not LMP1 transcript production indicating that Brd4 and pTEFb are required for Cp transcription. Taken together our data indicate that pol II stalling at Cp promotes transcription of essential immortalizing genes during EBV infection by (i) preventing promoter-proximal nucleosome assembly and ii) necessitating the recruitment of pTEFb thereby maintaining serine 2 CTD phosphorylation at distal regions
    corecore