158 research outputs found

    O-antigenic chains of lipopolysaccharide prevent binding of antibody molecules to an outer membrane pore protein in Enterobacteriaceae

    Get PDF
    The accessibility of outer membrane pore protein PhoE to antibody molecules at the cell surface of intact cells of various Enterobacteriaceae was investigated. Significant antibody binding was observed for only two of the nine strains tested. Analysis of the lipopolysaccharide by sodium dodecyl sulphate gel electrophoresis revealed a clear correlation between the presence of an O-antigenic side chain and the inability to bind PhoE protein-specific antibodies. As mutants that lack the O-antigen chain appeared to have acquired the ability to bind antibody, it must be concluded that the presence of O-antigenic chains of lipopolysaccharide prevents binding of antibodies to PhoE protein at the surface of intact cells. The relevance of this conclusion for the potential use of enterobacterial outer membrane pore proteins as vaccine components is discussed

    Українська культура як чинник української державності: історичний аспект

    Get PDF
    У статті подано особливості формування української національної культури кінця XIX - XX століть. Охарактеризовано розвиток культури за умови становлення української державності. Автор намагався простежити вплив національного суспільства на розвиток культури в конкретний історичний період.The article introduces the features of formation of the Ukrainian national culture of the 19th-20th centuries. Characterized by the development of culture during becoming of Ukrainian statehood. The author tried to trace the influence of the national society for the development of culture in a specific historical period

    Production of bacterial outer membrane vesicles as vaccine platform

    Get PDF
    Bacterial outer membrane vesicles (OMVs) are non-infectious but highly immunogenic particles. These vesicles are used as vaccines against the disease of the source bacteria. Fascinatingly, the addition of heterologous antigens to these vesicles creates a versatile vaccine platform. Such a platform can be used as an alternative to subunit vaccines, during infectious disease outbreaks or for the development of vaccines against pathogens that require high containment. A unique aspect of this platform is the reusability of the production process for many different vaccines. This in turn could reduce the time to market for new vaccines significantly. We designed a heterologous OMV vaccine concept for Lyme disease based on spontaneous released OMVs from Neisseria meningitidis that express the Outer surface protein A (OspA) of Borrelia burgdorferi on the surface. The productivity of spontaneously released OMVs was improved by the introduction of oxidative stress to the bacterial culture. Increased dissolved oxygen concentrations during cultivation showed to be an excellent process parameter for enhanced release of OMVs, while the bacterial culture remains viable. This presentation will cover the development of the OMV-based vaccine platform and the impact of changes in the upstream process on the downstream process of the investigational OMV-based Lyme disease vaccine. Please click Additional Files below to see the full abstract

    In matrix derivatization combined with LC-MS/MS results in ultra-sensitive quantification of plasma free metanephrines and catecholamines

    Get PDF
    Plasma-free metanephrines and catecholamines are essential markers in the biochemical diagnosis and follow-up of neuroendocrine tumors and inborn errors of metabolism. However, their low circulating concentrations (in the nanomolar range) and poor fragmentation characteristics hinder facile simultaneous quantification by liquid chromatography and tandem mass spectrometry (LC-MS/MS). Here, we present a sensitive and simple matrix derivatization procedure using propionic anhydride that enables simultaneous quantification of unconjugated l-DOPA, catecholamines, and metanephrines in plasma by LC-MS/MS. Dilution of propionic anhydride 1:4 (v/v) in acetonitrile in combination with 50 μL of plasma resulted in the highest mass spectrometric response. In plasma, derivatization resulted in stable derivatives and increased sensitivity by a factor of 4-30 compared with a previous LC-MS/MS method for measuring plasma metanephrines in our laboratory. Furthermore, propionylation increased specificity, especially for 3-methoxytyramine, by preventing interference from antihypertensive medication (β-blockers). The method was validated according to international guidelines and correlated with a hydrophilic interaction LC-MS/MS method for measuring plasma metanephrines (R2 > 0.99) and high-performance liquid chromatography with an electrochemical detection method for measuring plasma catecholamines (R2 > 0.85). Reference intervals for l-DOPA, catecholamines, and metanephrines in n = 115 healthy individuals were established. Our work shows that analytes in the subnanomolar range in plasma can be derivatized in situ without any preceding sample extraction. The developed method shows improved sensitivity and selectivity over existing methods and enables simultaneous quantification of several classes of amines

    Substrate specificity of the pyrophosphohydrolase LpxH determines the asymmetry of Bordetella pertussis lipid A

    Get PDF
    Lipopolysaccharides are anchored to the outer membrane of Gram-negative bacteria by a hydrophobic moiety known as lipid A, which potently activates the host innate immune response. Lipid A of Bordetella pertussis, the causative agent of whooping cough, displays unusual structural asymmetry with respect to the length of the acyl chains at the 3 and 3′ positions, which are 3OH-C10 and 3OH-C14 chains, respectively. Both chains are attached by the acyltransferase LpxA, the first enzyme in the lipid A biosynthesis pathway, which, in B. pertussis, has limited chain length specificity. However, this only partially explains the strict asymmetry of lipid A. In attempts to modulate the endotoxicity of B. pertussis lipid A, here we expressed the gene encoding LpxA from Neisseria meningitidis, which specifically attaches 3OH-C12 chains, in B. pertussis. This expression was lethal, suggesting that one of the downstream enzymes in the lipid A biosynthesis pathway in B. pertussis cannot handle precursors with a 3OH-C12 chain. We considered that the UDP-diacylglucosamine pyrophosphohydrolase LpxH could be responsible for this defect as well as for the asymmetry of B. pertussis lipid A. Expression of meningococcal LpxH in B. pertussis indeed resulted in new symmetric lipid A species with 3OH-C10 or 3OH-C14 chains at both the 3 and 3′ positions, as revealed by MS analysis. Furthermore, co-expression of meningococcal lpxH and lpxA resulted in viable cells that incorporated 3OH-C12 chains in B. pertussis lipid A. We conclude that the asymmetry of B. pertussis lipid A is determined by the acyl chain length specificity of LpxH

    Naturally Occurring Lipid A Mutants in Neisseria meningitidis from Patients with Invasive Meningococcal Disease Are Associated with Reduced Coagulopathy

    Get PDF
    Neisseria meningitidis is a major cause of bacterial meningitis and sepsis worldwide. Lipopolysaccharide (LPS), a major component of the Gram-negative bacterial outer membrane, is sensed by mammalian cells through Toll-like receptor 4 (TLR4), resulting in activation of proinflammatory cytokine pathways. TLR4 recognizes the lipid A moiety of the LPS molecule, and the chemical composition of the lipid A determines how well it is recognized by TLR4. N. meningitidis has been reported to produce lipid A with six acyl chains, the optimal number for TLR4 recognition. Indeed, meningococcal sepsis is generally seen as the prototypical endotoxin-mediated disease. In the present study, we screened meningococcal disease isolates from 464 patients for their ability to induce cytokine production in vitro. We found that around 9% of them were dramatically less potent than wild-type strains. Analysis of the lipid A of several of the low-activity strains by mass spectrometry revealed they were penta-acylated, suggesting a mutation in the lpxL1 or lpxL2 genes required for addition of secondary acyl chains. Sequencing of these genes showed that all the low activity strains had mutations that inactivated the lpxL1 gene. In order to see whether lpxL1 mutants might give a different clinical picture, we investigated the clinical correlate of these mutations in a prospective nationwide observational cohort study of adults with meningococcal meningitis. Patients infected with an lpxL1 mutant presented significantly less frequently with rash and had higher thrombocyte counts, consistent with reduced cytokine induction and less activation of tissue-factor mediated coagulopathy. In conclusion, here we report for the first time that a surprisingly large fraction of meningococcal clinical isolates have LPS with underacylated lipid A due to mutations in the lpxL1 gene. The resulting low-activity LPS may have an important role in virulence by aiding the bacteria to evade the innate immune system. Our results provide the first example of a specific mutation in N. meningitidis that can be correlated with the clinical course of meningococcal disease

    Rational Vaccine Design in Times of Emerging Diseases: The Critical Choices of Immunological Correlates of Protection, Vaccine Antigen and Immunomodulation.

    Get PDF
    Vaccines are the most effective medical intervention due to their continual success in preventing infections and improving mortality worldwide. Early vaccines were developed empirically however, rational design of vaccines can allow us to optimise their efficacy, by tailoring the immune response. Establishing the immune correlates of protection greatly informs the rational design of vaccines. This facilitates the selection of the best vaccine antigens and the most appropriate vaccine adjuvant to generate optimal memory immune T cell and B cell responses. This review outlines the range of vaccine types that are currently authorised and those under development. We outline the optimal immunological correlates of protection that can be targeted. Finally we review approaches to rational antigen selection and rational vaccine adjuvant design. Harnessing current knowledge on protective immune responses in combination with critical vaccine components is imperative to the prevention of future life-threatening diseases

    Cancer Genome Sequencing and Its Implications for Personalized Cancer Vaccines

    Get PDF
    New DNA sequencing platforms have revolutionized human genome sequencing. The dramatic advances in genome sequencing technologies predict that the $1,000 genome will become a reality within the next few years. Applied to cancer, the availability of cancer genome sequences permits real-time decision-making with the potential to affect diagnosis, prognosis, and treatment, and has opened the door towards personalized medicine. A promising strategy is the identification of mutated tumor antigens, and the design of personalized cancer vaccines. Supporting this notion are preliminary analyses of the epitope landscape in breast cancer suggesting that individual tumors express significant numbers of novel antigens to the immune system that can be specifically targeted through cancer vaccines

    The Effect of Human Factor H on Immunogenicity of Meningococcal Native Outer Membrane Vesicle Vaccines with Over-Expressed Factor H Binding Protein

    Get PDF
    The binding of human complement inhibitors to vaccine antigens in vivo could diminish their immunogenicity. A meningococcal ligand for the complement down-regulator, factor H (fH), is fH-binding protein (fHbp), which is specific for human fH. Vaccines containing recombinant fHbp or native outer membrane vesicles (NOMV) from mutant strains with over-expressed fHbp are in clinical development. In a previous study in transgenic mice, the presence of human fH impaired the immunogenicity of a recombinant fHbp vaccine. In the present study, we prepared two NOMV vaccines from mutant group B strains with over-expressed wild-type fHbp or an R41S mutant fHbp with no detectable fH binding. In wild-type mice in which mouse fH did not bind to fHbp in either vaccine, the NOMV vaccine with wild-type fHbp elicited 2-fold higher serum IgG anti-fHbp titers (P = 0.001) and 4-fold higher complement-mediated bactericidal titers against a PorA-heterologous strain than the NOMV with the mutant fHbp (P = 0.003). By adsorption, the bactericidal antibodies were shown to be directed at fHbp. In transgenic mice in which human fH bound to the wild-type fHbp but not to the R41S fHbp, the NOMV vaccine with the mutant fHbp elicited 5-fold higher serum IgG anti-fHbp titers (P = 0.002), and 19-fold higher bactericidal titers than the NOMV vaccine with wild-type fHbp (P = 0.001). Thus, in mice that differed only by the presence of human fH, the respective results with the two vaccines were opposite. The enhanced bactericidal activity elicited by the mutant fHbp vaccine in the presence of human fH far outweighed the loss of immunogenicity of the mutant protein in wild-type animals. Engineering fHbp not to bind to its cognate complement inhibitor, therefore, may increase vaccine immunogenicity in humans
    corecore