2,193 research outputs found

    The influence of CpG and UpA dinucleotide frequencies on RNA virus replication and characterization of the innate cellular pathways underlying virus attenuation and enhanced replication

    Get PDF
    Most RNA viruses infecting mammals and other vertebrates show profound suppression of CpG and UpA dinucleotide frequencies. To investigate this functionally, mutants of the picornavirus, echovirus 7 (E7), were constructed with altered CpG and UpA compositions in two 1.1–1.3 Kbase regions. Those with increased frequencies of CpG and UpA showed impaired replication kinetics and higher RNA/infectivity ratios compared with wild-type virus. Remarkably, mutants with CpGs and UpAs removed showed enhanced replication, larger plaques and rapidly outcompeted wild-type virus on co-infections. Luciferase-expressing E7 sub-genomic replicons with CpGs and UpAs removed from the reporter gene showed 100-fold greater luminescence. E7 and mutants were equivalently sensitive to exogenously added interferon-β, showed no evidence for differential recognition by ADAR1 or pattern recognition receptors RIG-I, MDA5 or PKR. However, kinase inhibitors roscovitine and C16 partially or entirely reversed the attenuated phenotype of high CpG and UpA mutants, potentially through inhibition of currently uncharacterized pattern recognition receptors that respond to RNA composition. Generating viruses with enhanced replication kinetics has applications in vaccine production and reporter gene construction. More fundamentally, the findings introduce a new evolutionary paradigm where dinucleotide composition of viral genomes is subjected to selection pressures independently of coding capacity and profoundly influences host–pathogen interactions

    Sequencing of the Hepatitis C Virus: A Systematic Review

    Get PDF
    Since the identification of hepatitis C virus (HCV), viral sequencing has been important in understanding HCV classification, epidemiology, evolution, transmission clustering, treatment response and natural history. The length and diversity of the HCV genome has resulted in analysis of certain regions of the virus, however there has been little standardisation of protocols. This systematic review was undertaken to map the location and frequency of sequencing on the HCV genome in peer reviewed publications, with the aim to produce a database of sequencing primers and amplicons to inform future research. Medline and Scopus databases were searched for English language publications based on keyword/MeSH terms related to sequence analysis (9 terms) or HCV (3 terms), plus "primer" as a general search term. Exclusion criteria included non-HCV research, review articles, duplicate records, and incomplete description of HCV sequencing methods. The PCR primer locations of accepted publications were noted, and purpose of sequencing was determined. A total of 450 studies were accepted from the 2099 identified, with 629 HCV sequencing amplicons identified and mapped on the HCV genome. The most commonly sequenced region was the HVR-1 region, often utilised for studies of natural history, clustering/transmission, evolution and treatment response. Studies related to genotyping/classification or epidemiology of HCV genotype generally targeted the 5'UTR, Core and NS5B regions, while treatment response/resistance was assessed mainly in the NS3-NS5B region with emphasis on the Interferon sensitivity determining region (ISDR) region of NS5A. While the sequencing of HCV is generally constricted to certain regions of the HCV genome there is little consistency in the positioning of sequencing primers, with the exception of a few highly referenced manuscripts. This study demonstrates the heterogeneity of HCV sequencing, providing a comprehensive database of previously published primer sets to be utilised in future sequencing studies

    Proposals for the classification of human rhinovirus species C into genotypically assigned types

    Get PDF
    Human rhinoviruses (HRVs) are common respiratory pathogens associated with mild upper respiratory tract infections, but also increasingly recognized in the aetiology of severe lower respiratory tract disease. Wider use of molecular diagnostics has led to a recent reappraisal of HRV genetic diversity, including the discovery of HRV species C (HRV-C), which is refractory to traditional virus isolation procedures. Although it is heterogeneous genetically, there has to date been no attempt to classify HRV-C into types analogous to the multiple serotypes identified for HRV-A and -B and among human enteroviruses. Direct investigation of cross-neutralization properties of HRV-C is precluded by the lack of methods for in vitro culture, but sequences from the capsid genes (VP1 and partial VP4/VP2) show evidence for marked phylogenetic clustering, suggesting the possibility of a genetically based system comparable to that used for the assignment of new enterovirus types We propose a threshold of 13% divergence for VP1 nucleotide sequences for type assignment, a level that classifies the current dataset of 86 HRV-C VP1 sequences into a total of 33 types. We recognize, however, that most HRV-C sequence data have been collected in the VP4/VP2 region (currently 701 sequences between positions 615 and 1043) We propose a subsidiary classification of variants showing &gt;10% divergence in VP4/VP2, but lacking VP1 sequences, to 28 provisionally assigned types (subject to confirmation once VP1 sequences are determined). These proposals will assist in future epidemiological and clinical studies of HRV-C conducted by different groups worldwide, and provide the foundation for future exploration of type-associated differences in clinical presentations and biological properties</p

    Identification of a pegivirus (GBV-like virus) that infects horses

    Get PDF
    The recent identification of nonprimate hepaciviruses in dogs and then in horses prompted us to look for pegiviruses (GB virus-like viruses) in these species. Although none were detected in canines, we found widespread natural infection of horses by a novel pegivirus. Unique genomic features and phylogenetic analyses confirmed that the tentatively named equine pegivirus (EPgV) represents a novel species within the Pegivirus genus. We also determined that EPgV causes persistent viremia whereas its clinical significance is undetermined

    Evolution of the Hepatitis E virus hypervariable region

    Get PDF
    The presence of a hypervariable (HVR) region within the genome of hepatitis E virus (HEV) remains unexplained. Previous studies have described the HVR as a proline-rich spacer between flanking functional domains of the ORF1 polyprotein. Others have proposed that the region has no function, that it reflects a hypermutable region of the virus genome, that it is derived from the insertion and evolution of host sequences or that it is subject to positive selection. This study attempts to differentiate between these explanations by documenting the evolutionary processes occurring within the HVR. We have measured the diversity of HVR sequences within acutely infected individuals or amongst sequences derived from epidemiologically linked samples and, surprisingly, find relative homogeneity amongst these datasets. We found no evidence of positive selection for amino acid substitution in the HVR. Through an analysis of published sequences, we conclude that the range of HVR diversity observed within virus genotypes can be explained by the accumulation of substitutions and, to a much lesser extent, through deletions or duplications of this region. All published HVR amino acid sequences display a relative overabundance of proline and serine residues that cannot be explained by a local bias towards cytosine in this part of the genome. Although all published HVRs contain one or more SH3-binding PxxP motifs, this motif does not occur more frequently than would be expected from the proportion of proline residues in these sequences. Taken together, these observations are consistent with the hypothesis that the HVR has a structural role that is dependent upon length and amino acid composition, rather than a specific sequence

    Parvovirus 4 Infection and Clinical Outcome in High-Risk Populations

    Get PDF
    Parvovirus 4 (PARV4) is a DNA virus frequently associated with human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infections, but its clinical significance is unknown. We studied the prevalence of PARV4 antibodies in 2 cohorts of HIV- and HCV-infected individuals (n=469) and the correlations with disease status. We found that PARV4 infection frequently occurred in individuals exposed to bloodborne viruses (95% in HCV-HIV coinfected intravenous drug users [IDUs]). There were no correlations between PARV4 serostatus and HCV outcomes. There was, however, a significant association with early HIV-related symptoms, although because this was tightly linked to both HCV status and clinical group (IDU), the specific role of PARV4 is not yet clea
    corecore