47 research outputs found

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1ÎČ, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1ÎČ innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Differential induction of redox sensitive extracellular phenolic amides in potato

    Get PDF
    This study focuses on the differential induction of extracellular phenolic amides that accumulate in potato cell suspensions during the first few hours of the interaction between these plant cells and either bacterial pathogens or pathogen-related elicitors. Using suspension cells of Solanum tuberosum we identified 4 hydroxycinnamic acid amides that accumulate in the extracellular environment. Treatment of the suspension cells with pathovars of the plant pathogens Pseudomonas syringae or Ralstonia solanacearum or with pathogen-related elicitors changed the composition of the extracellular phenolic amides within hours and the composition differed for each treatment. Some of the phenolic amides were sensitive to oxidative stress; when suspension cells were treated with bacterial strains or elicitors that triggered an oxidative burst, the phenolics were oxidized and depleted for the duration of the burst. Other critical parameters that affected the qualitative and quantitative makeup of these phenolic amides were plant cell age and density

    RNA polymerase II gene (RPB2) encoding the second largest protein subunit in Phaeosphaeria nodorum and P. avenaria

    Get PDF
    A 5586 bp sequence (accession no. DQ278491), which includes the RNA polymerase II gene (RPB2) encoding the second largest protein subunit (RPB2), was obtained from the wheat biotype Phaeosphaeria nodorum (PN-w) by PCR amplification. The 3841 bp full length RPB2 gene contains two exons and a 52 bp intron, and encodes a complete 1262 amino acid protein. Similar to the C-terminals of the b subunits of prokaryotes and yeast RNA polymerases, the deduced RPB2 protein contained many structural features needed for gene transcription. Based on the phylogenetic analysis with the deduced RPB2 polypeptide sequences, the PN-w was closely related to the maize pathogen Cochliobolus heterostrophus. Size differences were found in the full length RPB2 gene of cereal Phaeosphaeria species, mainly due to differences in intron size. No nucleotide substitutions were found in homothallic P. avenaria f.sp. triticea (Pat1) and barley biotype P. nodorum (PN-b) isolates used in this study. The nucleotide and deduced amino acid sequences of the RPB2 gene in Pat1 were closely related to that in PN-w

    The Cercospora nicotianae gene encoding dual O-methyltransferase and FAD-dependent monooxygenase domains mediates cercosporin toxin biosynthesis

    Get PDF
    Cercosporin, a photo-activated, non-host-selective phytotoxin produced by many species of the plant pathogenic fungus Cercospora, causes peroxidation of plant cell membranes by generating reactive oxygen species and is an important virulence determinant. Here we report a new gene, CTB3 that is involved in cercosporin biosynthesis in Cercospora nicotianae. CTB3 is adjacent to a previously identified CTB1 encoding a polyketide synthase which is also required for cercosporin production. CTB3 contains a putative O-methyltransferase domain in the N-terminus and a putative flavin adenine dinucleotide (FAD)-dependent monooxygenase domain in the C-terminus. The N-terminal amino acid sequence also is similar to that of the transcription enhancer AFLS (formerly AFLJ) involved in aflatoxin biosynthesis. Expression of CTB3 was differentially regulated by light, medium, nitrogen and carbon sources and pH. Disruption of the Nor C-terminus of CTB3 yielded mutants that failed to accumulate the CTB3 transcript and cercosporin. The Δctb3 disruptants produced a yellow pigment that is not toxic to tobacco suspension cells. Production of cercosporin in a Δctb3 null mutant was fully restored when transformed with a functional CTB3 clone or when paired with a Δctb1-null mutant (defective in polyketide synthase) by cross feeding of the biosynthetic intermediates. Pathogenicity assays using detached tobacco leaves revealed that the Δctb3 disruptants drastically reduced lesion formation

    Improvement of resistance to plant pathogens and pests by DNA technology.

    No full text
    To improve crop yield, DNA technology has been used to enhance plant resistance toward pathogens and pests. Genes identified through understanding of host-pathogen interactions in viral, bacterial and fungal diseases, the mechanism of hypersensitive reaction in Arabidopsis and insect toxicity of natural peptides are used for their expression in plants. Progress on the use of simple sequence repeats (SSR) markers for resistance gene identification, development of virus-specific antibody gene expression in plants for virus control, construction of genes for multi-pathogen resistance, and use of viral vectors for gene efficiency evaluation are discussed
    corecore