25 research outputs found

    Perchlorate and chlorate reduction by the Crenarchaeon Aeropyrum pernix and two thermophilic Firmicutes

    Get PDF
    This study reports the ability of one hyperthermophile and two thermophilic microorganisms to grow anaerobically by the reduction of chlorate and perchlorate. Physiological, genomic and proteome analyses suggest that the Crenarchaeon Aeropyrum pernix reduces perchlorate with a periplasmic enzyme related to nitrate reductases, but that it lacks a functional chlorite-disproportionating enzyme (Cld) to complete the pathway. A. pernix, previously described as a strictly aerobic microorganism, seems to rely on the chemical reactivity of reduced sulfur compounds with chlorite, a mechanism previously reported for perchlorate-reducing Archaeoglobus fulgidus. The chemical oxidation of thiosulfate (in excessive amounts present in the medium) and the reduction of chlorite result in the release of sulfate and chloride, which are the products of a biotic-abiotic perchlorate reduction pathway in A. pernix. The apparent absence of Cld in two other perchlorate-reducing microorganisms, Carboxydothermus hydrogenoformans and Moorella glycerini strain NMP, and their dependence on sulfide for perchlorate reduction is consistent with observations made on A. fulgidus. Our findings suggest that microbial perchlorate reduction at high temperature differs notably from the physiology of perchlorate- and chlorate-reducing mesophiles and that it is characterized by the lack of a chlorite dismutase and is enabled by a combination of biotic and abiotic reactions.This research was financially supported by Shell Global Solutions International BV. Research of AJMS is supported by ERC grant (project 323009) and the Gravitation grant (project 024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Science Foundation (NWO). Sequencing data for strain NMP have been submitted to the European Nucleotide Archive (ENA) under accession number PRJEB8377. Mass spectrometry proteomics data and database search results have been deposited to the ProteomeXchange Consortium (Vizcaino et al., 2014) via the PRIDE partner repository with the dataset identifier PXD001683 and DOI 0.6019/PXD001683

    Unravelling the one-carbon metabolism of the acetogen Sporomusa strain An4 by genome and proteome analysis

    Get PDF
    Summary The Sporomusa genus comprises anaerobic sporeforming acetogenic bacteria that stain Gramnegative. Sporomusa species typically grow with one-carbon substrates and N-methylated compounds. In the degradation of these compounds methyltransferases are involved. In addition, Sporomusa species can grow autotrophically with H2 and CO2, and use a variety of sugars for acetogenic growth. Here we describe a genome analysis of Sporomusa strain An4 and a proteome analysis of cells grown under five different conditions. Comparison of the genomes of Sporomusa strain An4 and Sporomusa ovata strain H1 indicated that An4 is a S. ovata strain. Proteome analysis showed a high abundance of several methyltransferases, predominantly trimethylamine methyltransferases, during growth with betaine, whereas trimethylamine is one of the main end-products of betaine degradation. In methanol degradation methyltransferases are also involved. In methanol-utilizing methanogens, two methyltransferases catalyse methanol conversion, methyltransferase 1 composed of subunits MtaB and MtaC and methyltransferase 2, also called MtaA. The two methyltransferase 1 subunits MtaB and MtaC were highly abundant when strain An4 was grown with methanol. However, instead of MtaA a methyltetrahydrofolate methyltransferase was synthesized. We propose a novel methanol degradation pathway in Sporomusa strain An4 that uses a methyltetrahydrofolate methyltransferase instead of MtaA

    Rationale and design of the PRAETORIAN-COVID trial:A double-blind, placebo-controlled randomized clinical trial with valsartan for PRevention of Acute rEspiraTORy dIstress syndrome in hospitAlized patieNts with SARS-COV-2 Infection Disease

    Get PDF
    There is much debate on the use of angiotensin receptor blockers (ARBs) in severe acute respiratory syndrome–coronavirus-2 (SARS-CoV-2)–infected patients. Although it has been suggested that ARBs might lead to a higher susceptibility and severity of SARS-CoV-2 infection, experimental data suggest that ARBs may reduce acute lung injury via blocking angiotensin-II–mediated pulmonary permeability, inflammation, and fibrosis. However, despite these hypotheses, specific studies on ARBs in SARS-CoV-2 patients are lacking. Methods: The PRAETORIAN-COVID trial is a multicenter, double-blind, placebo-controlled 1:1 randomized clinical trial in adult hospitalized SARS-CoV-2–infected patients (n = 651). The primary aim is to investigate the effect of the ARB valsartan compared to placebo on the composite end point of admission to an intensive care unit, mechanical ventilation, or death within 14 days of randomization. The active-treatment arm will receive valsartan in a dosage titrated to blood pressure up to a maximum of 160 mg bid, and the placebo arm will receive matching placebo. Treatment duration will be 14 days, or until the occurrence of the primary end point or until hospital discharge, if either of these occurs within 14 days. The trial is registered at clinicaltrials.gov (NCT04335786, 2020). The PRAETORIAN-COVID trial is a double-blind, placebo-controlled 1:1 randomized trial to assess the effect of valsartan compared to placebo on the occurrence of ICU admission, mechanical ventilation, and death in hospitalized SARS-CoV-2–infected patients. The results of this study might impact the treatment of SARS-CoV-2 patients globally

    Transverse tubule remodelling: a cellular pathology driven by both sides of the plasmalemma?

    Get PDF
    Transverse (t)-tubules are invaginations of the plasma membrane that form a complex network of ducts, 200–400 nm in diameter depending on the animal species, that penetrates deep within the cardiac myocyte, where they facilitate a fast and synchronous contraction across the entire cell volume. There is now a large body of evidence in animal models and humans demonstrating that pathological distortion of the t-tubule structure has a causative role in the loss of myocyte contractility that underpins many forms of heart failure. Investigations into the molecular mechanisms of pathological t-tubule remodelling to date have focused on proteins residing in the intracellular aspect of t-tubule membrane that form linkages between the membrane and myocyte cytoskeleton. In this review, we shed light on the mechanisms of t-tubule remodelling which are not limited to the intracellular side. Our recent data have demonstrated that collagen is an integral part of the t-tubule network and that it increases within the tubules in heart failure, suggesting that a fibrotic mechanism could drive cardiac junctional remodelling. We examine the evidence that the linkages between the extracellular matrix, t-tubule membrane and cellular cytoskeleton should be considered as a whole when investigating the mechanisms of t-tubule pathology in the failing heart

    Correction to: Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI).

    Get PDF
    CORRECTION TO: J CARDIOVASC MAGN RESON (2017) 19: 75. DOI: 10.1186/S12968-017-0389-8: In the original publication of this article [1] the "Competing interests" section was incorrect. The original publication stated the following competing interests

    Oleate Hydratase Catalyzes the Hydration of a Nonactivated Carbon-Carbon Bond▿ †

    No full text
    The hydration of oleic acid into 10-hydroxystearic acid was originally described for a Pseudomonas cell extract almost half a century ago. In the intervening years, the enzyme has never been characterized in any detail. We report here the isolation and characterization of oleate hydratase (EC 4.2.1.53) from Elizabethkingia meningoseptica

    High throughput techniques to reveal the molecular physiology and evolution of digestion in spiders

    No full text
    BACKGROUND: Spiders are known for their predatory efficiency and for their high capacity of digesting relatively large prey. They do this by combining both extracorporeal and intracellular digestion. Whereas many high throughput (“-omics”) techniques focus on biomolecules in spider venom, so far this approach has not yet been applied to investigate the protein composition of spider midgut diverticula (MD) and digestive fluid (DF). RESULTS: We here report on our investigations of both MD and DF of the spider Nephilingis (Nephilengys) cruentata through the use of next generation sequencing and shotgun proteomics. This shows that the DF is composed of a variety of hydrolases including peptidases, carbohydrases, lipases and nuclease, as well as of toxins and regulatory proteins. We detect 25 astacins in the DF. Phylogenetic analysis of the corresponding transcript(s) in Arachnida suggests that astacins have acquired an unprecedented role for extracorporeal digestion in Araneae, with different orthologs used by each family. The results of a comparative study of spiders in distinct physiological conditions allow us to propose some digestion mechanisms in this interesting animal taxon. CONCLUSION: All the high throughput data allowed the demonstration that DF is a secretion originating from the MD. We identified enzymes involved in the extracellular and intracellular phases of digestion. Besides that, data analyses show a large gene duplication event in Araneae digestive process evolution, mainly of astacin genes. We were also able to identify proteins expressed and translated in the digestive system, which until now had been exclusively associated to venom glands. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-3048-9) contains supplementary material, which is available to authorized users
    corecore