447 research outputs found

    Zebrafish genetics: Mutant cornucopia

    Get PDF
    AbstractThe initial characterization of mutations from the large-scale mutagenesis of the zebrafish genome has been reported. What new insights will we gain about vertebrate development from these studies

    The Role of TRiC-enhanced Actin Folding in Leber Congenital Amaurosis

    Get PDF
    Purpose: Mutations in TCP-1 ring complex (TRiC) have been associated with Leber Congenital Amaurosis (LCA). TRiC is involved in protein folding and has 8 essential subunits including CCT5. Herein, we studied the retina of TRiC mutant zebrafish to evaluate the possible role of impaired actin and tubulin folding in LCA. Methods: The cct5tf 212b retina was histologically studied using Toluidine Blue staining as well as TUNEL, BrdU-labeling, and Phalloidin assays. Retinal organisation was assessed by quantification of the cellularity utilising DAPI. Results: Laminar organization of cct5tf 212b retinas was intact. Enhanced apoptosis throughout the cct5tf 212b retina was not compensated by higher proliferation rates, leaving the cct5tf 212b retina smaller in size. Quantification of retinal layer cellularity demonstrated that specifically the numbers of the amacrine and the retinal ganglion cells were depleted, suggesting that the cct5tf 212b retina was not uniformly affected by the reduced actin folding. Conclusion: Whereas the current literature suggests that LCA is predominantly affecting retinal photoreceptor cells and the retinal pigment epithelium, cct5tf 212b analyses demonstrated the important role of folding of actin by TRiC, suggesting that cct

    Dystrophin is required for the formation of stable muscle attachments in the zebrafish embryo

    Get PDF
    A class of recessive lethal zebrafish mutations has been identified in which normal skeletal muscle differentiation is followed by a tissue-specific degeneration that is reminiscent of the human muscular dystrophies. Here, we show that one of these mutations, sapje, disrupts the zebrafish orthologue of the X-linked human Duchenne muscular dystrophy (DMD) gene. Mutations in this locus cause Duchenne or Becker muscular dystrophies in human patients and are thought to result in a dystrophic pathology through disconnecting the cytoskeleton from the extracellular matrix in skeletal muscle by reducing the level of dystrophin protein at the sarcolemma. This is thought to allow tearing of this membrane, which in turn leads to cell death. Surprisingly, we have found that the progressive muscle degeneration phenotype of sapje mutant zebrafish embryos is caused by the failure of embryonic muscle end attachments. Although a role for dystrophin in maintaining vertebrate myotendinous junctions (MTJs) has been postulated previously and MTJ structural abnormalities have been identified in the Dystrophin-deficient mdx mouse model, in vivo evidence of pathology based on muscle attachment failure has thus far been lacking. This zebrafish mutation may therefore provide a model for a novel pathological mechanism of Duchenne muscular dystrophy and other muscle diseases

    Fgf-dependent glial cell bridges facilitate spinal cord regeneration in Zebrafish

    Get PDF
    Adult Zebrafish show a remarkable capacity to regenerate their spinal column after injury, an ability that stands in stark contrast to the limited repair that occurs within the mammalian CNS post-injury. The reasons for this interspecies difference in regenerative capacity remain unclear. Here we demonstrate a novel role for Fgf signaling during glial cell morphogenesis in promoting axonal regeneration after spinal cordinjury. Zebrafish glia are induced by Fgf signaling, to form anelongated bipolarmorphology that formsabridge between the two sides of the resected spinal cord, over which regenerating axons actively migrate. Loss of Fgf function inhibits formation of this "glial bridge" and prevents axon regeneration. Despite the poor potential for mammalian axonal regeneration, primate astrocytes activated by Fgf signaling adopt a similar morphology to that induced in Zebrafish glia. This suggests that differential Fgf regulation, rather than intrinsic cell differences, underlie the distinct responses of mammalian and Zebrafish glia to injury

    Dengue and climate change in Australia: predictions for the future should incorporate knowledge from the past

    Get PDF
    •Dengue transmission in Australia is currently restricted to Queensland, where the vector mosquito Aedes aegypti is established. Locally acquired infections have been reported only from urban areas in the north-east of the state, where the vector is most abundant. •Considerable attention has been drawn to the potential impact of climate change on dengue distribution within Australia, with projections for substantial rises in incidence and distribution associated with increasing temperatures. •However, historical data show that much of Australia has previously sustained both the vector mosquito and dengue viruses. Although current vector distribution is restricted to Queensland, the area inhabited by A. aegypti is larger than the disease-transmission areas, and is not restricted by temperature (or vector-control programs); thus, it is unlikely that rising temperatures alone will bring increased vector or virus distribution. •Factors likely to be important to dengue and vector distribution in the future include increased dengue activity in Asian and Pacific nations that would raise rates of virus importation by travellers, importation of vectors via international ports to regions without A. aegypti, higher rates of domestic collection and storage of water that would provide habitat in urban areas, and growing human populations in northern Australia. •Past and recent successful control initiatives in Australia lend support to the idea that well resourced and functioning surveillance programs, and effective public health intervention capabilities, are essential to counter threats from dengue and other mosquito-borne diseases. •Models projecting future activity of dengue (or other vector-borne disease) with climate change should carefully consider the local historical and contemporary data on the ecology and distribution of the vector and local virus transmission

    Cadherin-Mediated Differential Cell Adhesion Controls Slow Muscle Cell Migration in the Developing Zebrafish Myotome

    Get PDF
    AbstractSlow-twitch muscle fibers of the zebrafish myotome undergo a unique set of morphogenetic cell movements. During embryogenesis, slow-twitch muscle derives from the adaxial cells, a layer of paraxial mesoderm that differentiates medially within the myotome, immediately adjacent to the notochord. Subsequently, slow-twitch muscle cells migrate through the entire myotome, coming to lie at its most lateral surface. Here we examine the cellular and molecular basis for slow-twitch muscle cell migration. We show that slow-twitch muscle cell morphogenesis is marked by behaviors typical of cells influenced by differential cell adhesion. Dynamic and reciprocal waves of N-cadherin and M-cadherin expression within the myotome, which correlate precisely with cell migration, generate differential adhesive environments that drive slow-twitch muscle cell migration through the myotome. Removing or altering the expression of either protein within the myotome perturbs migration. These results provide a definitive example of homophilic cell adhesion shaping cellular behavior during vertebrate development

    Illusory perceptions of space and time preserve cross-saccadic perceptual continuity

    Get PDF
    When voluntary saccadic eye movements are made to a silently ticking clock, observers sometimes think that the second hand takes longer than normal to move to its next position. For a short period, the clock appears to have stopped (chronostasis). Here we show that the illusion occurs because the brain extends the percept of the saccadic target backwards in time to just before the onset of the saccade. This occurs every time we move the eyes but it is only perceived when an external time reference alerts us to the phenomenon. The illusion does not seem to depend on the shift of spatial attention that accompanies the saccade. However, if the target is moved unpredictably during the saccade, breaking perception of the target's spatial continuity, then the illusion disappears. We suggest that temporal extension of the target's percept is one of the mechanisms that 'fill in' the perceptual 'gap' during saccadic suppression. The effect is critically linked to perceptual mechanisms that identify a target's spatial stability

    Intragenic Dominant Suppressors of glp-1, a Gene Essential for Cell-Signaling in Caenorhabditis elegans, Support a Role for cdcl O/SWZ6/Ankyrin Motifs in GLP-1 Function

    Get PDF
    The glp-1 gene product mediates cell-cell interactions required for cell fate specification during development in Caenorhabditis elegans. To identify genes that interact with glp-1, we screened for dominant suppressors of two temperature-sensitive glp-1 alleles and recovered 18 mutations that suppress both germline and embryonic glp-1 phenotypes. These dominant suppressors are tightly linked to glp-1 and do not bypass the requirement for a distal tip cell, which is thought to be the source of a signal that is received and transduced by the GLP-1 protein. Using single-strand conformation polymorphism (SSCP) analysis and DNA sequencing, we found that at least 17 suppressors are second-site intragenic revertants. The suppressors, like the original glp-1(ts) mutations, are all located in the cdc10/SWI6/ankyrin domain of GLP-1. cdc10/SWI6/ankyrin motifs have been shown to mediate specific protein-protein interactions in other polypeptides. We propose that the glp-1(ts) mutations disrupt contact between GLP-1 and an as yet unidentified target protein(s) and that the dominant suppressor mutations restore appropriate protein-protein interactions

    Rental Housing Assistance for the 21st Century

    Get PDF
    Current rental housing assistance programs are not designed to provide a safety net for people whose lives are volatile, or to encourage poor people to live in good locations. These failings can be corrected. HUD should establish a program of rental insurance-like mortgage insurance, but for renters. Low income housing assistance formulas should be revised to reward good neighborhood features, and punish bad
    corecore