38 research outputs found

    Linking intraspecific trait variation to community abundance dynamics improves ecological predictability by revealing a growth-defence trade-off

    Get PDF
    Intraspecific trait change, including altered behaviour or morphology, can drive temporal variation in interspecific interactions and population dynamics. In turn, variation in species' interactions and densities can alter the strength and direction of trait change. The resulting feedback between species' traits and abundance permits a wide range of community dynamics that would not be expected from ecological theories purely based on species abundances. Despite the theoretical importance of these interrelated processes, unambiguous experimental evidence of how intraspecific trait variation modifies species interactions and population dynamics and how this feeds back to influence trait variation is currently required. We investigate the role of trait-mediated demography in determining community dynamics and examine how ecological interactions influence trait change. We concurrently monitored the dynamics of community abundances and individual traits in an experimental microbial predator-prey-resource system. Using this data, we parameterised a trait-dependent community model to identify key ecologically relevant traits and to link trait dynamics with those of species abundances. Our results provide clear evidence of a feedback between trait change, demographic rates and species dynamics. The inclusion of trait-abundance feedbacks into our population model improved the predictability of ecological dynamics from r 2 of 34% to 57% and confirmed theoretical expectations of density-dependent population growth and species interactions in the system. Additionally, our model revealed that the feedbacks were underpinned by a trade-off between population growth and anti-predatory defence. High predator abundance was linked to a reduction in prey body size. This prey size decrease was associated with a reduction in its rate of consumption by predators and a decrease in its resource consumption. Modelling trait-abundance feedbacks allowed us to pinpoint the underlying life history trade-off which links trait and abundance dynamics. These results show that accounting for trait-abundance feedbacks has the potential to improve understanding and predictability of ecological dynamics. A plain language summary is available for this article

    Dynamic species classification of microorganisms across time, abiotic and biotic environments-A sliding window approach.

    Get PDF
    The development of video-based monitoring methods allows for rapid, dynamic and accurate monitoring of individuals or communities, compared to slower traditional methods, with far reaching ecological and evolutionary applications. Large amounts of data are generated using video-based methods, which can be effectively processed using machine learning (ML) algorithms into meaningful ecological information. ML uses user defined classes (e.g. species), derived from a subset (i.e. training data) of video-observed quantitative features (e.g. phenotypic variation), to infer classes in subsequent observations. However, phenotypic variation often changes due to environmental conditions, which may lead to poor classification, if environmentally induced variation in phenotypes is not accounted for. Here we describe a framework for classifying species under changing environmental conditions based on the random forest classification. A sliding window approach was developed that restricts temporal and environmentally conditions to improve the classification. We tested our approach by applying the classification framework to experimental data. The experiment used a set of six ciliate species to monitor changes in community structure and behavior over hundreds of generations, in dozens of species combinations and across a temperature gradient. Differences in biotic and abiotic conditions caused simplistic classification approaches to be unsuccessful. In contrast, the sliding window approach allowed classification to be highly successful, as phenotypic differences driven by environmental change, could be captured by the classifier. Importantly, classification using the random forest algorithm showed comparable success when validated against traditional, slower, manual identification. Our framework allows for reliable classification in dynamic environments, and may help to improve strategies for long-term monitoring of species in changing environments. Our classification pipeline can be applied in fields assessing species community dynamics, such as eco-toxicology, ecology and evolutionary ecology

    Plant functional and taxonomic diversity in European grasslands along climatic gradients

    Get PDF
    Aim: European grassland communities are highly diverse, but patterns and drivers of their continental-scale diversity remain elusive. This study analyses taxonomic and functional richness in European grasslands along continental-scale temperature and precipitation gradients. Location: Europe. Methods: We quantified functional and taxonomic richness of 55,748 vegetation plots. Six plant traits, related to resource acquisition and conservation, were analysed to describe plant community functional composition. Using a null-model approach we derived functional richness effect sizes that indicate higher or lower diversity than expected given the taxonomic richness. We assessed the variation in absolute functional and taxonomic richness and in functional richness effect sizes along gradients of minimum temperature, temperature range, annual precipitation, and precipitation seasonality using a multiple general additive modelling approach. Results: Functional and taxonomic richness was high at intermediate minimum temperatures and wide temperature ranges. Functional and taxonomic richness was low in correspondence with low minimum temperatures or narrow temperature ranges. Functional richness increased and taxonomic richness decreased at higher minimum temperatures and wide annual temperature ranges. Both functional and taxonomic richness decreased with increasing precipitation seasonality and showed a small increase at intermediate annual precipitation. Overall, effect sizes of functional richness were small. However, effect sizes indicated trait divergence at extremely low minimum temperatures and at low annual precipitation with extreme precipitation seasonality. Conclusions: Functional and taxonomic richness of European grassland communities vary considerably over temperature and precipitation gradients. Overall, they follow similar patterns over the climate gradients, except at high minimum temperatures and wide temperature ranges, where functional richness increases and taxonomic richness decreases. This contrasting pattern may trigger new ideas for studies that target specific hypotheses focused on community assembly processes. And though effect sizes were small, they indicate that it may be important to consider climate seasonality in plant diversity studies

    The effect of environmental noise on population and community dynamics

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN023918 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Loss of functionally unique species may gradually undermine ecosystems

    No full text
    Functionally unique species contribute to the functional diversity of natural systems, often enhancing ecosystem functioning. An abundance of weakly interacting species increases stability in natural systems, suggesting that loss of weakly linked species may reduce stability. Any link between the functional uniqueness of a species and the strength of its interactions in a food web could therefore have simultaneous effects on ecosystem functioning and stability. Here, we analyse patterns in 213 real food webs and show that highly unique species consistently tend to have the weakest mean interaction strength per unit biomass in the system. This relationship is not a simple consequence of the interdependence of both measures on body size and appears to be driven by the empirical pattern of size structuring in aquatic systems and the trophic position of each species in the web. Food web resolution also has an important effect, with aggregation of species into higher taxonomic groups producing a much weaker relationship. Food webs with fewer unique and less weakly interacting species also show significantly greater variability in their levels of primary production. Thus, the loss of highly unique, weakly interacting species may eventually lead to dramatic state changes and unpredictable levels of ecosystem functioning

    On the statistical significance of functional diversity effects

    Full text link
    Changes in biodiversity can affect ecosystem processes through a variety of pathways, such as changes in community structure, loss of a keystone or changes in resource use patterns among species. The latter, also known as resource use complementarity, is an established mechanistic link between species and ecosystems. At present, functional group richness is the dominant measure of the extent of resource use complementarity and has been manipulated in several experiments. These groups are constructed a priori using information about differences between species and a statistically significant effect is typically identified by standard parametric tests. These tests implicitly assume that the a priori functional groups are correct. Avoiding this assumption requires a randomization (bootstrap) test of statistical significance that accounts for the effects of grouping per se. This test compares the observed test statistic to the distribution of the test statistic resulting from random assignment of species to groups. Re-analyses of experimental manipulations of plant functional diversity by bootstrapping the critical significance value changed the ecological interpretation of results in nearly half of the experiments. This occurred because random assignment of species to functional groups frequently creates a strong relationship between functional diversity and ecosystem functioning. The significant bootstrapped results that were found perhaps represent some of the most convincing evidence that functional diversity is an important determinant of local-scale ecosystem functionin
    corecore