190 research outputs found

    Analysis of BRCA1 involvement in breast cancer in Indian women

    Get PDF
    The involvement of the familial breast-ovarian cancer gene (BRCA1) in the molecular pathogenesis of breast cancer among Indian women is unknown. We have used a set of microsatellite polymorphisms to examine the frequency of allele loss at the BRCA1 region on chromosome 17q21, in a panel of 80 human breast tumours. Tumour and blood leukocyte/normal tissue DNA from a series of 80 patients with primary breast cancer was screened by PCR-amplified microsatellite length polymorphisms to detect deletions at three polymorphic BRCA1 loci. PCR-allelotype was valuable in examining allele losses from archival and small tumour samples. Loss of alleles at BRCA1 in the patient set, confirmed a noteworthy role of this gene in the molecular pathogenesis of breast cancer and was in accordance with its well-documented tumour suppressive function

    Supervillin (p205): A Novel Membrane-associated, F-Actin–binding Protein in the Villin/Gelsolin Superfamily

    Get PDF
    Actin-binding membrane proteins are involved in both adhesive interactions and motile processes. We report here the purification and initial characterization of p205, a 205-kD protein from bovine neutrophil plasma membranes that binds to the sides of actin filaments in blot overlays. p205 is a tightly bound peripheral membrane protein that cosediments with endogenous actin in sucrose gradients and immunoprecipitates. Amino acid sequences were obtained from SDS-PAGE–purified p205 and used to generate antipeptide antibodies, immunolocalization data, and cDNA sequence information. The intracellular localization of p205 in MDBK cells is a function of cell density and adherence state. In subconfluent cells, p205 is found in punctate spots along the plasma membrane and in the cytoplasm and nucleus; in adherent cells, p205 concentrates with E-cadherin at sites of lateral cell–cell contact. Upon EGTA-mediated cell dissociation, p205 is internalized with E-cadherin and F-actin as a component of adherens junctions “rings.” At later times, p205 is observed in cytoplasmic punctae. The high abundance of p205 in neutrophils and suspension-grown HeLa cells, which lack adherens junctions, further suggests that this protein may play multiple roles during cell growth, adhesion, and motility. Molecular cloning of p205 cDNA reveals a bipartite structure. The COOH terminus exhibits a striking similarity to villin and gelsolin, particularly in regions known to bind F-actin. The NH2 terminus is novel, but contains four potential nuclear targeting signals. Because p205 is now the largest known member of the villin/gelsolin superfamily, we propose the name, “supervillin.” We suggest that supervillin may be involved in actin filament assembly at adherens junctions and that it may play additional roles in other cellular compartments

    Domain analysis of supervillin, an F-actin bundling plasma membrane protein with functional nuclear localization signals

    Get PDF
    A growing number of actin-associated membrane proteins have been implicated in motile processes, adhesive interactions, and signal transduction to the cell nucleus. We report here that supervillin, an F-actin binding protein originally isolated from bovine neutrophil plasma membranes, contains functional nuclear targeting signals and localizes at or near vinculin-containing focal adhesion plaques in COS7-2 and CV1 cells. Overexpression of full-length supervillin in these cells disrupts the integrity of focal adhesion plaques and results in increased levels of F-actin and vinculin. Localization studies of chimeric proteins containing supervillin sequences fused with the enhanced green fluorescent protein indicate that: (1) the amino terminus promotes F-actin binding, targeting to focal adhesions, and limited nuclear localization; (2) the dominant nuclear targeting signal is in the center of the protein; and (3) the carboxy-terminal villin/gelsolin homology domain of supervillin does not, by itself, bind tightly to the actin cytoskeleton in vivo. Overexpression of chimeras containing both the amino-terminal F-actin binding site(s) and the dominant nuclear targeting signal results in the formation of large nuclear bundles containing F-actin, supervillin, and lamin. These results suggest that supervillin may contribute to cytoarchitecture in the nucleus, as well as at the plasma membrane

    Filamin-A Regulates Neutrophil Uropod Retraction through RhoA during Chemotaxis

    Get PDF
    Filamin-A (FLNa) has been shown to be a key cross-linker of actin filaments in the leading edge of a motile melanoma cell line, however its role in neutrophils undergoing chemotaxis is unknown. Using a murine transgenic model in which FLNa is selectively deleted in granulocytes, we report that, while neutrophils lacking FLNa show normal polarization and pseudopod extension, they exhibit obvious defects in uropod retraction. This uropod retraction defect was found to be a direct result of reduced FLNa mediated activation of the small GTPase RhoA and myosin mediated actin contraction in the FLNa null cells. This results in a neutrophil recruitment defect in FLNa null mice. The compensatory increase in FLNb levels that was observed in the FLNa null neutrophils may be sufficient to compensate for the lack of FLNa at the leading edge allowing for normal polarization, however this compensation is unable to regulate RhoA activated tail retraction at the rear of the cell

    From Fertilisation to Implantation in Mammalian Pregnancy-Modulation of Early Human Reproduction by the Endocannabinoid System.

    Get PDF
    There is an increasing recognition that the endocannabinoid system is the crucial cytokine-hormone system regulating early human pregnancy. The synchronous development of the fertilized embryo and the endometrium to ensure timely implantation has been shown to be one of the pivotal steps to successful implantation. This development is thought to be regulated by a finely balanced relationship between various components of the endocannabinoid system in the endometrium, the embryo and the Fallopian tube. In addition, this system has also been shown to be involved in the regulation of the development and maturation of the gametes prior to fertilization. In this review, we will examine the evidence from animal and human studies to support the role of the endocannabinoid system in gametogenesis, fertilization, implantation, early pregnancy maintenance, and in immunomodulation of pregnancy. We will discuss the role of the cannabinoid receptors and the enzymes involved in the synthesis and degradation of the key endocannabinoid ligands (e.g., anandamide and 2-arachinoylglycerol) in early reproduction
    corecore