2,091 research outputs found

    Influence of rotational force fields on the determination of the work done on a driven Brownian particle

    Full text link
    For a Brownian system the evolution of thermodynamic quantities is a stochastic process. In particular, the work performed on a driven colloidal particle held in an optical trap changes for each realization of the experimental manipulation, even though the manipulation protocol remains unchanged. Nevertheless, the work distribution is governed by established laws. Here, we show how the measurement of the work distribution is influenced by the presence of rotational, i.e. nonconservative, radiation forces. Experiments on particles of different materials show that the rotational radiation forces, and therefore their effect on the work distributions, increase with the particle refractive index.Comment: 12 pages, 4 figure

    Microrheology with optical tweezers: data analysis

    Get PDF
    We present a data analysis procedure that provides the solution to a long-standing issue in microrheology studies, i.e. the evaluation of the fluids' linear viscoelastic properties from the analysis of a finite set of experimental data, describing (for instance) the time-dependent mean-square displacement of suspended probe particles experiencing Brownian fluctuations. We report, for the first time in the literature, the linear viscoelastic response of an optically trapped bead suspended in a Newtonian fluid, over the entire range of experimentally accessible frequencies. The general validity of the proposed method makes it transferable to the majority of microrheology and rheology techniques

    ASCA and contemporaneous ground-based observations of the BL Lacertae objects 1749+096 and 2200+420 (BL Lac)

    Get PDF
    We present ASCA observations of the radio-selected BL Lacertae objects 1749+096 (z=0.32) and 2200+420 (BL Lac, z=0.069) performed in 1995 Sept and Nov, respectively. The ASCA spectra of both sources can be described as a first approximation by a power law with photon index Gamma ~ 2. This is flatter than for most X-ray-selected BL Lacs observed with ASCA, in agreement with the predictions of current blazar unification models. While 1749+096 exhibits tentative evidence for spectral flattening at low energies, a concave continuum is detected for 2200+420: the steep low-energy component is consistent the high-energy tail of the synchrotron emission responsible for the longer wavelengths, while the harder tail at higher energies is the onset of the Compton component. The spectral energy distributions from radio to gamma-rays are consistent with synchrotron-self Compton emission from a single homogeneous region shortward of the IR/optical wavelengths, with a second component in the radio domain related to a more extended emission region. For 2200+420, comparing the 1995 Nov state with the optical/GeV flare of 1997 July, we find that models requiring inverse Compton scattering of external photons provide a viable mechanism for the production of the highest (GeV) energies during the flare. An increase of the external radiation density and of the power injected in the jet can reproduce the flat gamma-ray continuum observed in 1997 July. A directly testable prediction of this model is that the line luminosity in 2200+420 should vary shortly after (~1 month) a non-thermal synchrotron flare.Comment: 28 pages,6 figures, 5 tables; LaTeX document. accepted for publication in the Astrophysical Journa

    Ultraviolet and Multiwavelength Variability of the Blazar 3C 279: Evidence for Thermal Emission

    Full text link
    The gamma-ray blazar 3C 279 was monitored on a nearly daily basis with IUE, ROSAT and EGRET for three weeks between December 1992 and January 1993. During this period, the blazar was at a historical minimum at all wavelengths. Here we present the UV data obtained during the above multiwavelength campaign. A maximum UV variation of ~50% is detected, while during the same period the X-ray flux varied by no more than 13%. At the lowest UV flux level the average spectrum in the 1230-2700 A interval is unusually flat for this object (~1). The flattening could represent the lowest energy tail of the inverse Compton component responsible for the X-ray emission, or could be due to the presence of a thermal component at ~20000 K possibly associated with an accretion disk. The presence of an accretion disk in this blazar object, likely observable only in very low states and otherwise hidden by the beamed, variable synchrotron component, would be consistent with the scenario in which the seed photons for the inverse Compton mechanism producing the gamma-rays are external to the relativistic jet. We further discuss the long term correlation of the UV flux with the X-ray and gamma-ray fluxes obtained at various epochs. All UV archival data are included in the analysis. Both the X- and gamma-ray fluxes are generally well correlated with the UV flux, approximately with square root and quadratic dependences, respectively.Comment: 22 pages, Latex, 7 PostScript figures, to appear in The Astrophysical Journa

    Toward polarized antiprotons: Machine development for spin-filtering experiments

    Get PDF
    The paper describes the commissioning of the experimental equipment and the machine studies required for the first spin-filtering experiment with protons at a beam kinetic energy of 49.349.3\,MeV in COSY. The implementation of a low-β\beta insertion made it possible to achieve beam lifetimes of τb=8000\tau_{\rm{b}}=8000\,s in the presence of a dense polarized hydrogen storage-cell target of areal density dt=(5.5±0.2)×1013atoms/cm2d_{\rm t}=(5.5\pm 0.2)\times 10^{13}\,\mathrm{atoms/cm^{2}}. The developed techniques can be directly applied to antiproton machines and allow for the determination of the spin-dependent pˉp\bar{p}p cross sections via spin filtering

    Further Closing the Resolution Gap: Integrating Cryo-Soft X-Ray and Light Microscopies

    Get PDF
    Abstract Water megamasers from circumnuclear disks in galaxy centers provide the most accurate measurements of supermassive black hole masses and uniquely probe the subparsec accretion processes. At the same time, these systems offer independent crucial constraints of the Hubble constant in the nearby universe, and thus, the arguably best single constraint on the nature of dark energy. The chances of finding these golden standards are, however, abysmally low, at ?3% overall for any level of water maser emission detected at 22 GHz and ?1% for those exhibiting disk-like configuration. We provide here a thorough summary of the current state of detection of water megamaser disks along with a novel investigation of the likelihood of increasing their detection rates based on a multivariate parameter analysis of the optical and mid-infrared (mid-IR) photometric properties of the largest database of galaxies surveyed for 22 GHz emission. We find that galaxies with water megamaser emission tend to be associated with strong emission in all Wide-field Infrared Survey Explorer mid-IR wavelengths, with the strongest enhancement in the W4 band, at 22 μm, as well as with previously proposed and newly found indicators of active galactic nucleus strength in the mid-IR, such as red W1???W2 and W1???W4 colors, and the integrated mid-IR luminosity of the host galaxy. These trends offer a potential boost of the megamaser detection rates to 6%–15%, or a factor of 2–8 relative to the current rates, depending on the chosen sample selection criteria, while fostering real chances for discovering ?20 new megamaser disks

    Alternatively activated dendritic cells regulate CD4+ T-cell polarization in vitro and in vivo

    Get PDF
    Interleukin-4 is a cytokine widely known for its role in CD4(+) T cell polarization and its ability to alternatively activate macrophage populations. In contrast, the impact of IL-4 on the activation and function of dendritic cells (DCs) is poorly understood. We report here that DCs respond to IL-4 both in vitro and in vivo by expression of multiple alternative activation markers with a different expression pattern to that of macrophages. We further demonstrate a central role for DC IL-4Rα expression in the optimal induction of IFNγ responses in vivo in both Th1 and Th2 settings, through a feedback loop in which IL-4 promotes DC secretion of IL-12. Finally, we reveal a central role for RELMα during T-cell priming, establishing that its expression by DCs is critical for optimal IL-10 and IL-13 promotion in vitro and in vivo. Together, these data highlight the significant impact that IL-4 and RELMα can have on DC activation and function in the context of either bacterial or helminth pathogens

    Measuring the Polarization of a Rapidly Precessing Deuteron Beam

    Get PDF
    This paper describes a time-marking system that enables a measurement of the in-plane (horizontal) polarization of a 0.97-GeV/c deuteron beam circulating in the Cooler Synchrotron (COSY) at the Forschungszentrum J\"ulich. The clock time of each polarimeter event is used to unfold the 120-kHz spin precession and assign events to bins according to the direction of the horizontal polarization. After accumulation for one or more seconds, the down-up scattering asymmetry can be calculated for each direction and matched to a sinusoidal function whose magnitude is proportional to the horizontal polarization. This requires prior knowledge of the spin tune or polarization precession rate. An initial estimate is refined by re-sorting the events as the spin tune is adjusted across a narrow range and searching for the maximum polarization magnitude. The result is biased toward polarization values that are too large, in part because of statistical fluctuations but also because sinusoidal fits to even random data will produce sizeable magnitudes when the phase is left free to vary. An analysis procedure is described that matches the time dependence of the horizontal polarization to templates based on emittance-driven polarization loss while correcting for the positive bias. This information will be used to study ways to extend the horizontal polarization lifetime by correcting spin tune spread using ring sextupole fields and thereby to support the feasibility of searching for an intrinsic electric dipole moment using polarized beams in a storage ring. This paper is a combined effort of the Storage Ring EDM Collaboration and the JEDI Collaboration.Comment: 28 pages, 15 figures, prepared for Physical Review ST - Accelerators and Beam

    Phase Measurement for Driven Spin Oscillations in a Storage Ring

    Get PDF
    This paper reports the first simultaneous measurement of the horizontal and vertical components of the polarization vector in a storage ring under the influence of a radio frequency (rf) solenoid. The experiments were performed at the Cooler Synchrotron COSY in J\"ulich using a vector polarized, bunched 0.97GeV/c0.97\,\textrm{GeV/c} deuteron beam. Using the new spin feedback system, we set the initial phase difference between the solenoid field and the precession of the polarization vector to a predefined value. The feedback system was then switched off, allowing the phase difference to change over time, and the solenoid was switched on to rotate the polarization vector. We observed an oscillation of the vertical polarization component and the phase difference. The oscillations can be described using an analytical model. The results of this experiment also apply to other rf devices with horizontal magnetic fields, such as Wien filters. The precise manipulation of particle spins in storage rings is a prerequisite for measuring the electric dipole moment (EDM) of charged particles
    corecore