212 research outputs found

    Development of body mass and sexual size dimorphism in Danish red foxes (Vulpes vulpes)

    Get PDF
    <span class="fontstyle0">In this study, we examine the development of body mass and sexual size dimorphism (SSD) in 178 juvenile wild Danish red </span><span class="fontstyle0">foxes </span><span class="fontstyle0">from 99 litters </span><span class="fontstyle0">using </span><span class="fontstyle0">piecewise analyses of regression lines for age </span><span class="fontstyle2">versus</span><span class="fontstyle0"> weight</span><span class="fontstyle0">. When fox cubs are younger than 100 days, only slight (SSD=1.7%) and no significant difference</span><span class="fontstyle0"> (t-test: t=1.2, p=0.24) </span><span class="fontstyle0">was found in the mean weight of </span><span class="fontstyle0">males (2.03± kg) and females (1.93± kg), and</span><span class="fontstyle0"> no significant difference was found in the slope of regression lines </span><span class="fontstyle0">for </span><span class="fontstyle0">males and females </span><span class="fontstyle0">(F=0.97E-5, p = 0.99). In the growth period between 100 days of age and mating around 275 days of age, the regression line in males steepens more than that of females (difference in slopes, F=5.9, p&lt;0.02) and the difference in mean weight of the sexes become highly significant (SSD=7.4%, difference in mean t=4.6, p=2.2E-5). After mating the growth curve levels off i.e. the slope of the regression lines for age </span><span class="fontstyle2">versus</span><span class="fontstyle0"> weight is not significantly different from zero. Yearly variation was revealed in the growth rate of juvenile foxes (difference in slope for males; F=3.9, p&lt;0.01 and females; F=8.6, p&lt;0.001). Conclusion: SSD in red foxes mainly develop </span><span class="fontstyle0">as a result of a faster grow rate in males </span><span class="fontstyle0">between indepency and maturity. Ontogony of red foxes may genetically be disposed to prevent males outcompeting females in the early stages of life (&lt;100 days), when cubs are still fed by adults and the increase in SSD before mating, may be an adaption to selective forces benefitting larger males. </span><span class="fontstyle0">The growth rate of juvenile foxes of both sexes is influenced by environmental variation in different years.</span> <br /

    Using population viability analysis, genomics, and habitat suitability to forecast future population patterns of Little Owl Athene noctua across Europe

    Get PDF
    The agricultural scene has changed over the past decades, resulting in a declining population trend in many species. It is therefore important to determine the factors that the individual species depend on in order to understand their decline. The landscape changes have also resulted in habitat fragmentation, turning once continuous populations into metapopulations. It is thus increasingly important to estimate both the number of individuals it takes to create a genetically viable population and the population trend. Here, population viability analysis and habitat suitability modeling were used to estimate population viability and future prospects across Europe of the Little Owl Athene noctua, a widespread species associated with agricultural landscapes. The results show a high risk of population declines over the coming 100 years, especially toward the north of Europe, whereas populations toward the southeastern part of Europe have a greater probability of persistence. In order to be considered genetically viable, individual populations must count 1,000–30,000 individuals. As Little Owl populations of several countries count <30,000, and many isolated populations in northern Europe count <1,000 individuals, management actions resulting in exchange of individuals between populations or even countries are probably necessary to prevent losing <1% genetic diversity over a 100‐year period. At a continental scale, a habitat suitability analysis suggested Little Owl to be affected positively by increasing temperatures and urban areas, whereas an increased tree cover, an increasing annual rainfall, grassland, and sparsely vegetated areas affect the presence of the owl negatively. However, the low predictive power of the habitat suitability model suggests that habitat suitability might be better explained at a smaller scale

    Novel Graphical Analyses of Runs of Homozygosity among Species and Livestock Breeds

    Get PDF
    peer-reviewedRuns of homozygosity (ROH), uninterrupted stretches of homozygous genotypes resulting from parents transmitting identical haplotypes to their offspring, have emerged as informative genome-wide estimates of autozygosity (inbreeding). We used genomic profiles based on 698 K single nucleotide polymorphisms (SNPs) from nine breeds of domestic cattle (Bos taurus) and the European bison (Bison bonasus) to investigate how ROH distributions can be compared within and among species. We focused on two length classes: 0.5–15 Mb to investigate ancient events and >15 Mb to address recent events (approximately three generations). For each length class, we chose a few chromosomes with a high number of ROH, calculated the percentage of times a SNP appeared in a ROH, and plotted the results. We selected areas with distinct patterns including regions where (1) all groups revealed an increase or decrease of ROH, (2) bison differed from cattle, (3) one cattle breed or groups of breeds differed (e.g., dairy versus meat cattle). Examination of these regions in the cattle genome showed genes potentially important for natural and human-induced selection, concerning, for example, meat and milk quality, metabolism, growth, and immune function. The comparative methodology presented here permits visual identification of regions of interest for selection, breeding programs, and conservation.Cino Pertoldi was supported by a grant from Danish Natural Science Research Council (Grant nos. 11-103926, 09-065999, and 95095995), the Carlsberg Foundation (Grant no. 2011- 01-0059), and the Aalborg Zoo Conservation Foundation (AZCF). Laura Iacolina has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Action (Grant Agreement no. 656697). Astrid V. Stronen received funding from the Danish Natural Science Research Council (Postdoctoral Grant 1337-00007)

    Patient Perceptions and Knowledge of Ionizing Radiation from Medical Imaging

    Get PDF
    Importance: Although imaging has become a standard tool of modern medicine, its widespread use has been paralleled by an increasing cumulative radiation dose to patients despite technological advancements and campaigns calling for better awareness and minimization of unnecessary exposures. Objective: To assess patients' knowledge about medical radiation and related risks. Design, Setting, and Participants: A survey study of hospitals in Italy was conducted; all patients in waiting rooms for medical imaging procedures before undergoing imaging examinations at 16 teaching and nonteaching hospitals were approached to take the survey. The survey was performed from June 1, 2019, to May 31, 2020. Main Outcomes and Measures: Survey respondents' basic knowledge of ionizing radiation levels and health risks, earlier imaging tests performed, and information and communication about radiation protection issues. Results: Among 3039 patients invited to participate, the response rate was 94.3% (n = 2866). Participants included 1531 women (53.4%); mean (SD) age was 44.9 (17.3) years. Of the 2866 participants, 1529 (53.3%) were aware of the existence of natural sources of ionizing radiation. Mammography (1101 [38.4%]) and magnetic resonance imaging (1231 [43.0%]) were categorized as radiation-based imaging modalities. More than half of the 2866 patients (1579 [55.1%]; P =.03) did not know that chest computed tomography delivers a larger dose of radiation than chest radiography, and only 1499 (52.3%) knew that radiation can be emitted after nuclear medicine examinations (P =.004). A total of 667 patients (23.3%) believed that radiation risks were unrelated to age, 1273 (44.4%) deemed their knowledge about radiation risks inadequate, and 2305 (80.4%) preferred to be informed about radiation risks by medical staff. A better knowledge of radiation issues was associated with receiving information from health care professionals (odds ratio [OR], 1.71; 95% CI, 1.43-2.03; P &lt;.001) and having a higher educational level (intermediate vs low: OR, 1.48; 95% CI, 1.17-1.88; P &lt;.001; high vs low: OR, 2.68; 95% CI, 2.09-3.43; P &lt;.001). Conclusions and Relevance: The results of this survey suggest that patients undergoing medical imaging procedures have overall limited knowledge about medical radiation. Intervention to achieve better patient awareness of radiation risks related to medical exposures may be beneficial

    The first search for bosonic super-WIMPs with masses up to 1 MeV/c2^2 with GERDA

    Get PDF
    We present the first search for bosonic super-WIMPs as keV-scale dark matter candidates performed with the GERDA experiment. GERDA is a neutrinoless double-beta decay experiment which operates high-purity germanium detectors enriched in 76^{76}Ge in an ultra-low background environment at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN in Italy. Searches were performed for pseudoscalar and vector particles in the mass region from 60 keV/c2^2 to 1 MeV/c2^2. No evidence for a dark matter signal was observed, and the most stringent constraints on the couplings of super-WIMPs with masses above 120 keV/c2^2 have been set. As an example, at a mass of 150 keV/c2^2 the most stringent direct limits on the dimensionless couplings of axion-like particles and dark photons to electrons of gae<31012g_{ae} < 3 \cdot 10^{-12} and α/α<6.51024{\alpha'}/{\alpha} < 6.5 \cdot 10^{-24} at 90% credible interval, respectively, were obtained.Comment: 6 pages, 3 figures, submitted to Physical Review Letters, added list of authors, updated ref. [21

    How accurate is the phenotype? – An analysis of developmental noise in a cotton aphid clone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The accuracy by which phenotype can be reproduced by genotype potentially is important in determining the stability, environmental sensitivity, and evolvability of morphology and other phenotypic traits. Because two sides of an individual represent independent development of the phenotype under identical genetic and environmental conditions, average body asymmetry (or "fluctuating asymmetry") can estimate the developmental instability of the population. The component of developmental instability not explained by intrapopulational differences in gene or environment (or their interaction) can be further defined as internal developmental noise. Surprisingly, developmental noise remains largely unexplored despite its potential influence on our interpretations of developmental stability, canalization, and evolvability. Proponents of fluctuating asymmetry as a bioindicator of environmental or genetic stress, often make the assumption that developmental noise is minimal and, therefore, that phenotype can respond sensitively to the environment. However, biologists still have not measured whether developmental noise actually comprises a significant fraction of the overall environmental response of fluctuating asymmetry observed within a population.</p> <p>Results</p> <p>In a morphometric study designed to partition developmental noise from fluctuating asymmetry in the wing morphology of a monoclonal culture of cotton aphid, <it>Aphis gossipyii</it>, it was discovered that fluctuating asymmetry in the aphid wing was nearly four times higher than in other insect species. Also, developmental noise comprised a surprisingly large fraction (≈ 50%) of the overall response of fluctuating asymmetry to a controlled graded temperature environment. Fluctuating asymmetry also correlated negatively with temperature, indicating that environmentally-stimulated changes in developmental instability are mediated mostly by changes in the development time of individuals.</p> <p>Conclusion</p> <p>The amount of developmental noise revealed in this trait potentially does interfere with a substantial amount of the sensitivity of fluctuating asymmetry to change in temperature. Assuming that some genetic-based variation in individual buffering of developmental instability exists in natural aphid populations, the amount of internal developmental noise determined in this study could also substantially reduce evolvability of the aphid wing. The overall findings here suggest that individual response to the seemingly high cost of stabilizing some aspects of the phenotype may account for the frequent observation of trait and species specificity in levels of fluctuating asymmetry.</p

    Genome\u2011wide diversity and runs of homozygosity in the \u201cBraque Fran\ue7ais, type Pyr\ue9n\ue9es\u201d dog breed

    Get PDF
    Objective: Braque Fran\uc3\ua7ais, type Pyr\uc3\ua9n\uc3\ua9es is a French hunting-dog breed whose origin is traced back to old pointing gun-dogs used to assist hunters in finding and retrieving game. This breed is popular in France, but seldom seen elsewhere. Despite the ancient background, the literature on its genetic characterization is surprisingly scarce. A recent study looked into the demography and inbreeding using pedigree records, but there is yet no report on the use of molecular markers in this breed. The aim of this work was to genotype a population of Braque Fran\uc3\ua7ais, type Pyr\uc3\ua9n\uc3\ua9es dogs with the high-density SNP array to study the genomic diversity of the breed. Results: The average observed (HO) and expected (HE) heterozygosity were 0.371 (\uc2\ub1 0.142) and 0.359 (\uc2\ub1 0.124). Effective population size (NE) was 27.5635 runs of homozygosity (ROH) were identified with average length of 2.16 MB. A ROH shared by 75% of the dogs was detected at the beginning of chromosome 22. Inbreeding coefficients from marker genotypes were in the range FIS= [- 0.127, 0.172]. Inbreeding estimated from ROH (FROH) had mean 0.112 (\uc2\ub1 0.023), with range [0.0526, 0.225]. These results show that the Braque Fran\uc3\ua7ais, type Pyr\uc3\ua9n\uc3\ua9es breed is a relatively inbred population, but with still sufficient genetic variability for conservation and genetic improvement

    A Meta-Analysis of Local Adaptation in Plants

    Get PDF
    Local adaptation is of fundamental importance in evolutionary, population, conservation, and global-change biology. The generality of local adaptation in plants and whether and how it is influenced by specific species, population and habitat characteristics have, however, not been quantitatively reviewed. Therefore, we examined published data on the outcomes of reciprocal transplant experiments using two approaches. We conducted a meta-analysis to compare the performance of local and foreign plants at all transplant sites. In addition, we analysed frequencies of pairs of plant origin to examine whether local plants perform better than foreign plants at both compared transplant sites. In both approaches, we also examined the effects of population size, and of the habitat and species characteristics that are predicted to affect local adaptation. We show that, overall, local plants performed significantly better than foreign plants at their site of origin: this was found to be the case in 71.0% of the studied sites. However, local plants performed better than foreign plants at both sites of a pair-wise comparison (strict definition of local adaption) only in 45.3% of the 1032 compared population pairs. Furthermore, we found local adaptation much more common for large plant populations (>1000 flowering individuals) than for small populations (<1000 flowering individuals) for which local adaptation was very rare. The degree of local adaptation was independent of plant life history, spatial or temporal habitat heterogeneity, and geographic scale. Our results suggest that local adaptation is less common in plant populations than generally assumed. Moreover, our findings reinforce the fundamental importance of population size for evolutionary theory. The clear role of population size for the ability to evolve local adaptation raises considerable doubt on the ability of small plant populations to cope with changing environments

    Developmental Stability Covaries with Genome-Wide and Single-Locus Heterozygosity in House Sparrows

    Get PDF
    Fluctuating asymmetry (FA), a measure of developmental instability, has been hypothesized to increase with genetic stress. Despite numerous studies providing empirical evidence for associations between FA and genome-wide properties such as multi-locus heterozygosity, support for single-locus effects remains scant. Here we test if, and to what extent, FA co-varies with single- and multilocus markers of genetic diversity in house sparrow (Passer domesticus) populations along an urban gradient. In line with theoretical expectations, FA was inversely correlated with genetic diversity estimated at genome level. However, this relationship was largely driven by variation at a single key locus. Contrary to our expectations, relationships between FA and genetic diversity were not stronger in individuals from urban populations that experience higher nutritional stress. We conclude that loss of genetic diversity adversely affects developmental stability in P. domesticus, and more generally, that the molecular basis of developmental stability may involve complex interactions between local and genome-wide effects. Further study on the relative effects of single-locus and genome-wide effects on the developmental stability of populations with different genetic properties is therefore needed
    corecore