344 research outputs found
Surface and Image-Potential States on the MgB_2(0001) Surfaces
We present a self-consistent pseudopotential calculation of surface and
image-potential states on for both -terminated () and
-terminated () surfaces. We find a variety of very clear surface and
subsurface states as well as resonance image-potential states n=1,2 on both
surfaces. The surface layer DOS at is increased by 55% at and by
90% at the surface compared to DOS in the corresponding bulk layers.Comment: 3 pages, 6 figure
Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors
Quasiclassic Uzadel equations for two-band superconductors in the dirty limit
with the account of both intraband and interband scattering by nonmagnetic
impurities are derived for any anisotropic Fermi surface. From these equations
the Ginzburg-Landau equations, and the critical temperature are obtained.
An equation for the upper critical field, which determines both the temperature
dependence of and the orientational dependence of
as a function of the angle between and the c-axis is
obtained. It is shown that the shape of the curve essentially
depends on the ratio of the intraband electron diffusivities and ,
and can be very different from the standard one-gap dirty limit theory. In
particular, the value can considerably exceed ,
which can have important consequences for applications of . A scaling
relation is proposed which enables one to obtain the angular dependence of
from the equation for at . It is shown
that, depending on the relation between and , the ratio of the upper
critical field for and can both increase and decrease as the temperature decreases. Implications
of the obtained results for are discussed
Advances in ab-initio theory of Multiferroics. Materials and mechanisms: modelling and understanding
Within the broad class of multiferroics (compounds showing a coexistence of
magnetism and ferroelectricity), we focus on the subclass of "improper
electronic ferroelectrics", i.e. correlated materials where electronic degrees
of freedom (such as spin, charge or orbital) drive ferroelectricity. In
particular, in spin-induced ferroelectrics, there is not only a {\em
coexistence} of the two intriguing magnetic and dipolar orders; rather, there
is such an intimate link that one drives the other, suggesting a giant
magnetoelectric coupling. Via first-principles approaches based on density
functional theory, we review the microscopic mechanisms at the basis of
multiferroicity in several compounds, ranging from transition metal oxides to
organic multiferroics (MFs) to organic-inorganic hybrids (i.e. metal-organic
frameworks, MOFs)Comment: 22 pages, 9 figure
Phi meson production in Au+Au and p+p collisions at sqrt (s)=200 GeV
We report the STAR measurement of Phi meson production in Au+Au and p+p
collisions at sqrt (s)=200 GeV. Using the event mixing technique, the Phi
spectra and yields are obtained at mid-rapidity for five centrality bins in
Au+Au collisions and for non-singly-diffractive p+p collisions. It is found
that the Phi transverse momentum distributions from Au+Au collisions are better
fitted with a single-exponential while the p+p spectrum is better described by
a double-exponential distribution. The measured nuclear modification factors
indicate that Phi production in central Au+Au collisions is suppressed relative
to peripheral collisions when scaled by the number of binary collisions. The
systematics of versus centrality and the constant Phi/K- ratio versus beam
species, centrality, and collision energy rule out kaon coalescence as the
dominant mechanism for Phi production.Comment: 6 pages, 3 figures, submitted to Phys. Rev. Let
Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV
We present the first measurement of directed flow () at RHIC. is
found to be consistent with zero at pseudorapidities from -1.2 to 1.2,
then rises to the level of a couple of percent over the range . The latter observation is similar to data from NA49 if the SPS rapidities
are shifted by the difference in beam rapidity between RHIC and SPS.
Back-to-back jets emitted out-of-plane are found to be suppressed more if
compared to those emitted in-plane, which is consistent with {\it jet
quenching}. Using the scalar product method, we systematically compared
azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow
from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure
Azimuthal anisotropy: the higher harmonics
We report the first observations of the fourth harmonic (v_4) in the
azimuthal distribution of particles at RHIC. The measurement was done taking
advantage of the large elliptic flow generated at RHIC. The integrated v_4 is
about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8)
harmonics upper limits on the magnitudes are reported.Comment: 4 pages, 6 figures, contribution to the Quark Matter 2004 proceeding
Plasma Wakefield Acceleration with a Modulated Proton Bunch
The plasma wakefield amplitudes which could be achieved via the modulation of
a long proton bunch are investigated. We find that in the limit of long bunches
compared to the plasma wavelength, the strength of the accelerating fields is
directly proportional to the number of particles in the drive bunch and
inversely proportional to the square of the transverse bunch size. The scaling
laws were tested and verified in detailed simulations using parameters of
existing proton accelerators, and large electric fields were achieved, reaching
1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found
in this case.Comment: 9 pages, 7 figure
The energy dependence of angular correlations inferred from mean- fluctuation scale dependence in heavy ion collisions at the SPS and RHIC
We present the first study of the energy dependence of angular
correlations inferred from event-wise mean transverse momentum
fluctuations in heavy ion collisions. We compare our large-acceptance
measurements at CM energies $\sqrt{s_{NN}} =$ 19.6, 62.4, 130 and 200 GeV to
SPS measurements at 12.3 and 17.3 GeV. $p_t$ angular correlation structure
suggests that the principal source of $p_t$ correlations and fluctuations is
minijets (minimum-bias parton fragments). We observe a dramatic increase in
correlations and fluctuations from SPS to RHIC energies, increasing linearly
with $\ln \sqrt{s_{NN}}$ from the onset of observable jet-related
fluctuations near 10 GeV.Comment: 10 pages, 4 figure
- …