734 research outputs found

    Design for creep in pressure vessels.

    Get PDF

    Fighting rheumatoid arthritis: Kv1.3 as a therapeutic target

    Get PDF
    Abstract Rheumatoid arthritis (RA) is a serious autoimmune disease that has severe impacts on both the wellbeing of patients and the economy of the health system. Similar to many autoimmune diseases, RA concurs with a long evolution, which eventually results in highly debilitating symptoms. Therapeutic treatments last for long periods during RA. However, their efficiency and side effects result in suboptimal conditions. Therefore, the need for specific, safer and nontoxic alternatives for the treatment of RA is essential. Kv1.3 is a voltage-gated potassium channel that has a crucial role in immune system response. The proliferation and activation of leukocytes are linked to differential expressions of this channel. The evidence is particularly relevant in the aggressive T effector memory (TEM) cells, which are the main actors in the development of autoimmune diseases. Blockage of Kv1.3 inhibits the reactivity of these cells. Furthermore, pharmacological inhibition of Kv1.3 ameliorates symptoms in animal models of autoimmune diseases, such as experimental autoimmune encephalomyelitis or induced psoriasis with no side effects. Kv1.3 is sensitive to several animal toxins and plant compounds, and several research groups have searched for new Kv1.3 blockers by improving these natural molecules. The research is mainly focused on enhancing the selectivity of the blockers, thereby reducing the potential for side effects on other related channel subunits. Higher selectivity means that treatments will potentially be less harmful. This leads to a lower discontinuation rate of the therapy than the current first-line treatment for RA. The molecular backgrounds of many autoimmune diseases implicate leukocyte Kv1.3 and suggests that a new medication for RA is feasible. Therapies could also be later repurposed to treat other immune system disorders

    Intermolecular Carbonyl-olefin Metathesis with Vinyl Ethers Catalyzed by Homogeneous and Solid Acids in Flow

    Full text link
    This is the peer reviewed version of the following article: M. Á. Rivero-Crespo, M. Tejeda-Serrano, H. Pérez-Sánchez, J. P. Cerón-Carrasco, A. Leyva-Pérez, Angew. Chem. Int. Ed. 2020, 59, 3846, which has been published in final form at https://doi.org/10.1002/anie.201909597. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] The carbonyl-olefin metathesis reaction has experienced significant advances in the last seven years with new catalysts and reaction protocols. However, most of these procedures involve soluble catalysts for intramolecular reactions in batch. Herein, we show that recoverable, inexpensive, easy to handle, non-toxic, and widely available simple solid acids, such as the aluminosilicate montmorillonite, can catalyze the intermolecular carbonyl-olefin metathesis of aromatic ketones and aldehydes with vinyl ethers in-flow, to give alkenes with complete trans stereoselectivity on multi-gram scale and high yields. Experimental and computational data support a mechanism based on a carbocation-induced Grob fragmentation. These results open the way for the industrial implementation of carbonyl-olefin metathesis over solid catalysts in continuous mode, which is still the origin and main application of the parent alkene-alkene cross-metathesis.Financial support by MINECO through the Severo Ochoa program (SEV-2016-0683), Excellence program (CTQ 2017-86735-P, CTQ 2017-87974-R), Retos Col. (RTC-2017-6331-5), and "Convocatoria 2014 de Ayudas Fundacion BBVA a Investigadores y Creadores Culturales" is acknowledged. M.A.R.-C. and M.T.-S. thank ITQ for the concession of a contract. This research was partially supported by the supercomputing infrastructure of Poznan Supercomputing Center.Rivero-Crespo, MÁ.; Tejeda-Serrano, M.; Perez-Sánchez, H.; Cerón-Carrasco, JP.; Leyva Perez, A. (2020). Intermolecular Carbonyl-olefin Metathesis with Vinyl Ethers Catalyzed by Homogeneous and Solid Acids in Flow. Angewandte Chemie International Edition. 59(10):3846-3849. https://doi.org/10.1002/anie.201909597S384638495910Becker, M. R., Watson, R. B., & Schindler, C. S. (2018). Beyond olefins: new metathesis directions for synthesis. Chemical Society Reviews, 47(21), 7867-7881. doi:10.1039/c8cs00391bGriffith, A. K., Vanos, C. M., & Lambert, T. H. (2012). Organocatalytic Carbonyl-Olefin Metathesis. Journal of the American Chemical Society, 134(45), 18581-18584. doi:10.1021/ja309650uLudwig, J. R., Zimmerman, P. M., Gianino, J. B., & Schindler, C. S. (2016). Iron(III)-catalysed carbonyl–olefin metathesis. Nature, 533(7603), 374-379. doi:10.1038/nature17432Ludwig, J. R., Phan, S., McAtee, C. C., Zimmerman, P. M., Devery, J. J., & Schindler, C. S. (2017). Mechanistic Investigations of the Iron(III)-Catalyzed Carbonyl-Olefin Metathesis Reaction. Journal of the American Chemical Society, 139(31), 10832-10842. doi:10.1021/jacs.7b05641For reviews on carbonyl olefin metathesis see:Schindler, C., & Ludwig, J. (2017). Lewis Acid Catalyzed Carbonyl–Olefin Metathesis. Synlett, 28(13), 1501-1509. doi:10.1055/s-0036-1588827T. H. Lambert Synlett2019 ahead of print.For examples of solid-catalyzed low-temperature alkene metathesis see:Mougel, V., Chan, K.-W., Siddiqi, G., Kawakita, K., Nagae, H., Tsurugi, H., … Copéret, C. (2016). Low Temperature Activation of Supported Metathesis Catalysts by Organosilicon Reducing Agents. ACS Central Science, 2(8), 569-576. doi:10.1021/acscentsci.6b00176Korzyński, M. D., Consoli, D. F., Zhang, S., Román-Leshkov, Y., & Dincă, M. (2018). Activation of Methyltrioxorhenium for Olefin Metathesis in a Zirconium-Based Metal–Organic Framework. Journal of the American Chemical Society, 140(22), 6956-6960. doi:10.1021/jacs.8b02837Van Schaik, H.-P., Vijn, R.-J., & Bickelhaupt, F. (1994). Acid-Catalyzed Olefination of Benzaldehyde. Angewandte Chemie International Edition in English, 33(1516), 1611-1612. doi:10.1002/anie.199416111Van Schaik, H.-P., Vijn, R.-J., & Bickelhaupt, F. (1994). Säurekatalysierte Olefinierung von Benzaldehyd. Angewandte Chemie, 106(15-16), 1703-1704. doi:10.1002/ange.19941061529For pure Bronsted acid-catalyzed reactions see:Ludwig, J. R., Watson, R. B., Nasrallah, D. J., Gianino, J. B., Zimmerman, P. M., Wiscons, R. A., & Schindler, C. S. (2018). Interrupted carbonyl-olefin metathesis via oxygen atom transfer. Science, 361(6409), 1363-1369. doi:10.1126/science.aar8238Catti, L., & Tiefenbacher, K. (2018). Brønsted Acid-Catalyzed Carbonyl-Olefin Metathesis inside a Self-Assembled Supramolecular Host. Angewandte Chemie International Edition, 57(44), 14589-14592. doi:10.1002/anie.201712141Catti, L., & Tiefenbacher, K. (2018). Brønsted-Säure-katalysierte Carbonyl-Olefin-Metathese in einer selbstorganisierten supramolekularen Wirtstruktur. Angewandte Chemie, 130(44), 14797-14800. doi:10.1002/ange.201712141For intermolecular reactions see:Ni, S., & Franzén, J. (2018). Carbocation catalysed ring closing aldehyde–olefin metathesis. Chemical Communications, 54(92), 12982-12985. doi:10.1039/c8cc06734aPitzer, L., Sandfort, F., Strieth‐Kalthoff, F., & Glorius, F. (2018). Carbonyl–Olefin Cross‐Metathesis Through a Visible‐Light‐Induced 1,3‐Diol Formation and Fragmentation Sequence. Angewandte Chemie International Edition, 57(49), 16219-16223. doi:10.1002/anie.201810221Pitzer, L., Sandfort, F., Strieth‐Kalthoff, F., & Glorius, F. (2018). Carbonyl‐Olefin‐Kreuzmetathese mittels Licht‐induzierter 1,3‐Diol‐Bildung‐ und Fragmentierungssequenz. Angewandte Chemie, 130(49), 16453-16457. doi:10.1002/ange.201810221Tran, U. P. N., Oss, G., Pace, D. P., Ho, J., & Nguyen, T. V. (2018). Tropylium-promoted carbonyl–olefin metathesis reactions. Chemical Science, 9(23), 5145-5151. doi:10.1039/c8sc00907dTran, U. P. N., Oss, G., Breugst, M., Detmar, E., Pace, D. P., Liyanto, K., & Nguyen, T. V. (2018). Carbonyl–Olefin Metathesis Catalyzed by Molecular Iodine. ACS Catalysis, 9(2), 912-919. doi:10.1021/acscatal.8b03769Lewis, J. D., Van de Vyver, S., & Román‐Leshkov, Y. (2015). Acid–Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization. Angewandte Chemie International Edition, 54(34), 9835-9838. doi:10.1002/anie.201502939Lewis, J. D., Van de Vyver, S., & Román‐Leshkov, Y. (2015). Acid–Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization. Angewandte Chemie, 127(34), 9973-9976. doi:10.1002/ange.201502939Fortea-Pérez, F. R., Mon, M., Ferrando-Soria, J., Boronat, M., Leyva-Pérez, A., Corma, A., … Pardo, E. (2017). The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry. Nature Materials, 16(7), 760-766. doi:10.1038/nmat4910Oliver-Meseguer, J., Boronat, M., Vidal-Moya, A., Concepción, P., Rivero-Crespo, M. Á., Leyva-Pérez, A., & Corma, A. (2018). Generation and Reactivity of Electron-Rich Carbenes on the Surface of Catalytic Gold Nanoparticles. Journal of the American Chemical Society, 140(9), 3215-3218. doi:10.1021/jacs.7b13696Rivero‐Crespo, M. A., Mon, M., Ferrando‐Soria, J., Lopes, C. W., Boronat, M., Leyva‐Pérez, A., … Pardo, E. (2018). Confined Pt 1 1+ Water Clusters in a MOF Catalyze the Low‐Temperature Water–Gas Shift Reaction with both CO 2 Oxygen Atoms Coming from Water. Angewandte Chemie International Edition, 57(52), 17094-17099. doi:10.1002/anie.201810251Rivero‐Crespo, M. A., Mon, M., Ferrando‐Soria, J., Lopes, C. W., Boronat, M., Leyva‐Pérez, A., … Pardo, E. (2018). Confined Pt 1 1+ Water Clusters in a MOF Catalyze the Low‐Temperature Water–Gas Shift Reaction with both CO 2 Oxygen Atoms Coming from Water. Angewandte Chemie, 130(52), 17340-17345. doi:10.1002/ange.201810251Tejeda-Serrano, M., Mon, M., Ross, B., Gonell, F., Ferrando-Soria, J., Corma, A., … Pardo, E. (2018). Isolated Fe(III)–O Sites Catalyze the Hydrogenation of Acetylene in Ethylene Flows under Front-End Industrial Conditions. Journal of the American Chemical Society, 140(28), 8827-8832. doi:10.1021/jacs.8b04669Ma, L., Li, W., Xi, H., Bai, X., Ma, E., Yan, X., & Li, Z. (2016). FeCl3 -Catalyzed Ring-Closing Carbonyl-Olefin Metathesis. Angewandte Chemie International Edition, 55(35), 10410-10413. doi:10.1002/anie.201604349Ma, L., Li, W., Xi, H., Bai, X., Ma, E., Yan, X., & Li, Z. (2016). FeCl3 -Catalyzed Ring-Closing Carbonyl-Olefin Metathesis. Angewandte Chemie, 128(35), 10566-10569. doi:10.1002/ange.201604349McAtee, C. C., Riehl, P. S., & Schindler, C. S. (2017). Polycyclic Aromatic Hydrocarbons via Iron(III)-Catalyzed Carbonyl–Olefin Metathesis. Journal of the American Chemical Society, 139(8), 2960-2963. doi:10.1021/jacs.7b01114Niyomchon, S., Oppedisano, A., Aillard, P., & Maulide, N. (2017). A three-membered ring approach to carbonyl olefination. Nature Communications, 8(1). doi:10.1038/s41467-017-01036-yWatson, R. B., & Schindler, C. S. (2017). Iron-Catalyzed Synthesis of Tetrahydronaphthalenes via 3,4-Dihydro-2H-pyran Intermediates. Organic Letters, 20(1), 68-71. doi:10.1021/acs.orglett.7b03367Groso, E. J., Golonka, A. N., Harding, R. A., Alexander, B. W., Sodano, T. M., & Schindler, C. S. (2018). 3-Aryl-2,5-Dihydropyrroles via Catalytic Carbonyl-Olefin Metathesis. ACS Catalysis, 8(3), 2006-2011. doi:10.1021/acscatal.7b03769Albright, H., Riehl, P. S., McAtee, C. C., Reid, J. P., Ludwig, J. R., Karp, L. A., … Schindler, C. S. (2018). Catalytic Carbonyl-Olefin Metathesis of Aliphatic Ketones: Iron(III) Homo-Dimers as Lewis Acidic Superelectrophiles. Journal of the American Chemical Society, 141(4), 1690-1700. doi:10.1021/jacs.8b11840Śliwa, M., Samson, K., Ruggiero–Mikołajczyk, M., Żelazny, A., & Grabowski, R. (2014). Influence of Montmorillonite K10 Modification with Tungstophosphoric Acid on Hybrid Catalyst Activity in Direct Dimethyl Ether Synthesis from Syngas. Catalysis Letters, 144(11), 1884-1893. doi:10.1007/s10562-014-1359-5Cabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2015). Beyond Acid Strength in Zeolites: Soft Framework Counteranions for Stabilization of Carbocations on Zeolites and Its Implication in Organic Synthesis. Angewandte Chemie International Edition, 54(19), 5658-5661. doi:10.1002/anie.201500864Cabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2015). Beyond Acid Strength in Zeolites: Soft Framework Counteranions for Stabilization of Carbocations on Zeolites and Its Implication in Organic Synthesis. Angewandte Chemie, 127(19), 5750-5753. doi:10.1002/ange.201500864Gassman, P. G., & Burns, S. J. (1988). General method for the synthesis of enol ethers (vinyl ethers) from acetals. The Journal of Organic Chemistry, 53(23), 5574-5576. doi:10.1021/jo00258a043Yamamoto, T., Eki, T., Nagumo, S., Suemune, H., & Sakai, K. (1992). Drastic ring transformation reactions of fused bicyclic rings to bridged bicyclic rings. Tetrahedron, 48(22), 4517-4524. doi:10.1016/s0040-4020(01)81224-2Nagumo, S., Matsukuma, A., Suemune, H., & Sakai, K. (1993). Novel ring cleavage based on intermolecular aldol condensation. Tetrahedron, 49(46), 10501-10510. doi:10.1016/s0040-4020(01)81545-3Suemune, H., Yoshida, O., Uchida, J., Nomura, Y., Tanaka, M., & Sakai, K. (1995). Asymmetric ring cleavage reaction based on crossed aldol condensation. Tetrahedron Letters, 36(40), 7259-7262. doi:10.1016/0040-4039(95)01504-bKumar, B. S., Dhakshinamoorthy, A., & Pitchumani, K. (2014). K10 montmorillonite clays as environmentally benign catalysts for organic reactions. Catal. Sci. Technol., 4(8), 2378-2396. doi:10.1039/c4cy00112ePérez-Ruiz, R., Miranda, M. A., Alle, R., Meerholz, K., & Griesbeck, A. G. (2006). An efficient carbonyl-alkene metathesis of bicyclic oxetanes: photoinduced electron transfer reduction of the Paternò–Büchi adducts from 2,3-dihydrofuran and aromatic aldehydes. Photochem. Photobiol. Sci., 5(1), 51-55. doi:10.1039/b513875bD’Auria, M., & Racioppi, R. (2013). Oxetane Synthesis through the Paternò-Büchi Reaction. Molecules, 18(9), 11384-11428. doi:10.3390/molecules180911384Mete, T. B., Khopade, T. M., & Bhat, R. G. (2017). Oxidative decarboxylation of arylacetic acids in water: One-pot transition-metal-free synthesis of aldehydes and ketones. Tetrahedron Letters, 58(29), 2822-2825. doi:10.1016/j.tetlet.2017.06.013Corma, A., Ruiz, V. R., Leyva-Pérez, A., & Sabater, M. J. (2010). Regio- and Stereoselective Intermolecular Hydroalkoxylation of Alkynes Catalysed by Cationic Gold(I) Complexes. Advanced Synthesis & Catalysis, 352(10), 1701-1710. doi:10.1002/adsc.201000094Prantz, K., & Mulzer, J. (2010). Synthetic Applications of the Carbonyl Generating Grob Fragmentation. Chemical Reviews, 110(6), 3741-3766. doi:10.1021/cr900386hGong, Y. D., Tanaka, H., Iwasawa, N., & Narasaka, K. (1998). Lewis Acid-Promoted Disproportionation Reaction of Aromatic Vinyl Ethers and Acetals and Its Application to the Synthesis of Paracotoin. Bulletin of the Chemical Society of Japan, 71(9), 2181-2185. doi:10.1246/bcsj.71.2181Zhao, Y., & Truhlar, D. G. (2008). Density Functionals with Broad Applicability in Chemistry. Accounts of Chemical Research, 41(2), 157-167. doi:10.1021/ar700111aCopéret, C., Allouche, F., Chan, K. W., Conley, M. P., Delley, M. F., Fedorov, A., … Zhizhko, P. A. (2018). Bridging the Gap between Industrial and Well‐Defined Supported Catalysts. Angewandte Chemie International Edition, 57(22), 6398-6440. doi:10.1002/anie.201702387Copéret, C., Allouche, F., Chan, K. W., Conley, M. P., Delley, M. F., Fedorov, A., … Zhizhko, P. A. (2018). Eine Brücke zwischen industriellen und wohldefinierten Trägerkatalysatoren. Angewandte Chemie, 130(22), 6506-6551. doi:10.1002/ange.20170238

    Nanotitania catalyzes the chemoselective hydration and alkoxylation of epoxides

    Full text link
    [EN] Glycols and ethoxy- and propoxy-alcohols are fundamental chemicals in industry, with annual productions of millions of tons, still manufactured in many cases with corrosive and unrecoverable catalysts such as KOH, amines and BF3 center dot OEt2. Here we show that commercially available, inexpensive, non-toxic, solid and recyclable nanotitania catalyzes the hydration and alkoxylation of epoxides, with water and primary and secondary alcohols but not with phenols, carboxylic acids and tertiary alcohols. In this way, the chemoselective synthesis of different glycols and 1,4-dioxanones, and the implementation of nanotitania for the production in-flow of glycols and alkoxylated alcohols, has been achieved. Mechanistic studies support the key role of vacancies in the nano-oxide catalyst.A.L.-P. thanks the MICIIN (project code PID2020-115100GB-I00) for financial support. J.O.-M. thanks the Juan de la Cierva Program for the concession of a contract (IJC2018-036514-I). J.B.-S. thanks La Caixa Foundation grant (ID 100010434), code LCF/BQ/DI19/11730029.Oliver-Meseguer, J.; Ballesteros-Soberanas, J.; Tejeda-Serrano, M.; Martínez-Castelló, A.; Leyva Perez, A. (2021). Nanotitania catalyzes the chemoselective hydration and alkoxylation of epoxides. Molecular Catalysis. 515:1-11. https://doi.org/10.1016/j.mcat.2021.111927S11151

    Distribución horaria de las oviposiciones de gallinas semipesadas en jaulas enriquecidas sometidas a un programa convencional de iluminación (16L:8N).

    Get PDF
    El objetivo de este trabajo fue determinar la distribución porcentual de la puesta a lo largo del día en gallinas semipesadas alojadas en jaulas enriquecidas y sometidas a un programa convencional de luz (16l:8N),desde las 6:00 hasta las 22:00. Ello podría contribuir a programar el encendido y apagado de la luz en granjas con varias naves con el fin de distribuir la recogida y posterior clasificación de huevos de una forma más homogénea a lo largo de la jornada laboral, y a una menor permanencia de los huevos en las cintas de recogida

    Isolated Fe(III)-O Sites Catalyze the Hydrogenation of Acetylene in Ethylene Flows under Front-End Industrial Conditions

    Full text link
    [EN] The search for simple, earth-abundant, cheap, and nontoxic metal catalysts able to perform industrial hydrogenations is a topic of interest, transversal to many catalytic processes. Here, we show that isolated FeIII¿O sites on solids are able to dissociate and chemoselectively transfer H2 to acetylene in an industrial process. For that, a novel, robust, and highly crystalline metal¿organic framework (MOF), embedding FeIII¿OH2 single sites within its pores, was prepared in multigram scale and used as an efficient catalyst for the hydrogenation of 1% acetylene in ethylene streams under front-end conditions. Cutting-edge X-ray crystallography allowed the resolution of the crystal structure and snapshotted the single-atom nature of the catalytic FeIII¿O site. Translation of the active site concept to even more robust and inexpensive titania and zirconia supports enabled the industrially relevant hydrogenation of acetylene with similar activity to the Pd-catalyzed process.This work was supported by the MINECO (Spain) (Projects CTQ2016-75671-P, CTQ2014-56312-P, CTQ2014-55178-R, and Excellence Units "Severo Ochoa" and "Maria de Maeztu" SEV-2016-0683 and MDM-2015-0538) and the Ministero dell'Istruzione, dell'Universita e della Ricerca (Italy) (FFABR 2017). M.M. thanks the mineco for a predoctoral contract. Thanks are also extended to the Ramon y Cajal Program (E.P.) and the "Suprograma atraccio de talent-contractes postdoctorals de la Universitat de Valencia" (J.F.-S.). A.L.-P. and J.F.S. also thank fBBVA for the concession of a young investigator grants.Tejeda-Serrano, M.; Mon, M.; Ross, B.; Gonell-Gómez, F.; Ferrando-Soria, J.; Corma Canós, A.; Leyva Perez, A.... (2018). Isolated Fe(III)-O Sites Catalyze the Hydrogenation of Acetylene in Ethylene Flows under Front-End Industrial Conditions. Journal of the American Chemical Society. 140(28):8827-8832. https://doi.org/10.1021/jacs.8b04669S882788321402

    Post-synthetic ligand exchange as a route to improve the affinity of ZIF-67 towards CO2

    Get PDF
    The Zeolitic Imidazolate Framework 67 (ZIF-67) is a highly promising material owing to its exceptional thermal stability, large specific surface area, cost-effectiveness, and versatile applications. One of the potential applications of ZIF-67 is gas separation processes, among which the separation of CO2/CH4 mixtures has attracted great interest nowadays in the biogas sector. However, when it comes to CO2/CH4 separation, ZIF-67 falls short as it lacks the desired selectivity despite its high adsorption capacity. This limitation arises from its relatively low affinity towards CO2. In this study, we have addressed this issue by partially exchanging the ligand of ZIF-67, specifically replacing 2-methylimidazole with 1,2,4 (1H) triazole, which introduces an additional nitrogen atom. This modification resulted in ZIF-67 showing significantly enhanced affinity towards CO2 and, as a result, greater selectivity towards CO2 over CH4. The modified materials underwent thorough characterization using various techniques, and their adsorption capacity was evaluated through high-pressure adsorption isotherms. Furthermore, their separation performance was assessed using the Ideal Solution Adsorption Theory, which provided valuable insights into their potential for efficient gas separation.Financial support from Ministerio de Ciencia e Innovación (Spain, PID2020-116998RB-I00) is gratefully acknowledged. Conselleria de Innovacion, Universidades, Ciencia y Sociedad Digital (CIPROM/2021/022). This study forms part of the Advanced Materials programme and was supported by MCIN with funding from European Union NextGenerationEU (PRTR-C17.I1) and by Generalitat Valenciana

    Membrane-Less Ethanol Electrooxidation over Pd-M (M: Sn, Mo and Re) Bimetallic Catalysts

    Get PDF
    The effect of the addition of three oxophilic co-metals (Sn, Mo and Re) on the electrochemical performance of Pd in the ethanol oxidation reaction (EOR) was investigated by performing half-cell and membrane-less electrolysis cell experiments. While the additions of Sn and Re were found to improve significantly the EOR performance of Pd, Mo produced no significant promotional effect. When added in significant amounts (50:50 ratio), Sn and Re produced a 3–4 fold increase in the mass-normalized oxidation peak current as compared to the monometallic Pd/C material. Both the electrochemical surface area and the onset potential also improved upon addition of Sn and Re, although this effect was more evident for Sn. Cyclic voltammetry (CV) measurements revealed a higher ability of Sn for accommodating OH- species as compared to Re, which could explain these results. Additional tests were carried out in a membrane-less electrolysis system. Pd50Re50/C and Pd50Sn50/C both showed higher activity than Pd/C in this system. Chronopotentiometric measurements at constant current were carried out to test the stability of both catalysts in the absence of a membrane. Pd50Sn50/C was significantly more stable than Pd50Re50/C, which showed a rapid increase in the potential with time. Despite operating in the absence of a membrane, both catalysts generated a high-purity (e.g., 99.99%) hydrogen stream at high intensities and low voltages. These conditions could lead to significant energy consumption savings compared to commercial water electrolyzerSe investigó el efecto de la adición de tres cometales oxófilos (Sn, Mo y Re) en el rendimiento electroquímico de Pd en la reacción de oxidación de etanol (EOR) realizando experimentos de celdas de electrólisis sin membrana y de media celda. Si bien se encontró que las adiciones de Sn y Re mejoraban significativamente el rendimiento EOR de Pd, Mo no produjo un efecto promocional significativo. Cuando se agregaron en cantidades significativas (proporción 50:50), Sn y Re produjeron un aumento de 3 a 4 veces en la corriente máxima de oxidación de masa normalizada en comparación con el material monometálico Pd/C. Tanto el área de superficie electroquímica como el potencial de inicio también mejoraron con la adición de Sn y Re, aunque este efecto fue más evidente para Sn. Las mediciones de voltamperometría cíclica (CV) revelaron una mayor capacidad de Sn para acomodar especies de OH- en comparación con Re, lo que podría explicar estos resultados. Se llevaron a cabo pruebas adicionales en un sistema de electrólisis sin membrana. PD50 Re 50 /C y Pd 50 Sn 50 /C mostraron una mayor actividad que Pd/C en este sistema. Se realizaron medidas cronopotenciométricas a corriente constante para probar la estabilidad de ambos catalizadores en ausencia de membrana. El Pd 50 Sn 50 /C fue significativamente más estable que el Pd 50 Re 50 /C, que mostró un rápido aumento del potencial con el tiempo. A pesar de operar en ausencia de una membrana, ambos catalizadores generaron una corriente de hidrógeno de alta pureza (por ejemplo, 99,99%) a intensidades altas y voltajes bajos. Estas condiciones podrían conducir a un ahorro significativo en el consumo de energía en comparación con los electrolizadores de agua comerciale
    corecore