78 research outputs found

    Effectors of filamentous plant pathogens: Commonalities amid diversity

    Get PDF
    Fungi and oomycetes are filamentous microorganisms that include a diversity of highly developed pathogens of plants. These are sophisticated modulators of plant processes that secrete an arsenal of effector proteins to target multiple host cell compartments and enable parasitic infection. Genome sequencing revealed complex catalogues of effectors of filamentous pathogens, with some species harboring hundreds of effector genes. Although a large fraction of these effector genes encode secreted proteins with weak or no sequence similarity to known proteins, structural studies have revealed unexpected similarities amid the diversity. This article reviews progress in our understanding of effector structure and function in light of these new insights. We conclude that there is emerging evidence for multiple pathways of evolution of effectors of filamentous plant pathogens but that some families have probably expanded from a common ancestor by duplication and diversification. Conserved folds, such as the oomycete WY and the fungal MAX domains, are not predictive of the precise function of the effectors but serve as a chassis to support protein structural integrity while providing enough plasticity for the effectors to bind different host proteins and evolve unrelated activities inside host cells. Further effector evolution and diversification arise via short linear motifs, domain integration and duplications, and oligomerization

    T-helper cell polarisation following severe polytrauma

    Get PDF
    Introduction Severe polytrauma induces an immunosuppressive response and is associated with a very high incidence of nosocomial infections. Previous studies have inferred that this detrimental immune response results from polarisation of the T helper (Th) response towards an anti-inflammatory, TH2 dominated, response at the expense of a bactericidal, Th1 response [1]. Objectives 1) To define alterations in TH cell subsets following severe blunt polytrauma. Methods Patients presenting to the emergency department within 2 hours of severe polytrauma were eligible if intubated either at the scene or in ED. Isolated head injuries and those not expected to survive 24 hours were excluded. EDTA anti-coagulated blood was drawn at 0hr (within 2 hours of injury), at 24 and 72hrs. Samples were immediately lysed, washed, stained and analysed using a standardised human 8-colour TH 1, 2 & 17 panel [2] on an LSR II flow cytometer. A paired white cell count differential was obtained at each sampling point. Patients were followed until discharge or death. Data were analysed using non-parametric statistics, with results presented as median and IQR. Results 15 consecutive severe polytrauma patients requiring Intensive Care Unit (ICU) admission were recruited. Demographic and clinical data are outlined in Figure 1. Twelve (80%) lymphocytosis (3.3x109/L, 2.5 - 4.4x109/L) (Figyre 2A). At 72 hours leukocytes had fallen (P < 0.01, figure 2A) such that 6 (54%) of those surviving were lymphopenic (0.9x109/L, 0.6 - 1.2x109/L). Circulating CD4+ (P = 0.01; Figure 2B) and CD4+CD25+ (P < 0.05) lymphocytes increased over 72 hours. When expressed as a percentage of total circulating lymphocytes no significant change in the proportions of the TH 1, 2 & 17 subpopulations was detected (Figure 2C-E). Conclusions Severe polytrauma patients swiftly become lymphopenic. Although a failure to normalise this during the ICU stay correlates with higher mortality [3] our study of TH cell subtypes demonstrates no evidence of a switch to a detrimental anti-inflammatory TH2 subtype at the expense of the potentially protective bactericidal TH1 subtype

    Emerging oomycete threats to plants and animals

    Get PDF
    Oomycetes, or water moulds, are fungal-like organisms phylogenetically related to algae. They cause devastating diseases to both plants and animals. Here, we describe seven oomycete species that are emerging or re-emerging threats to agriculture, horticulture, aquaculture, and natural ecosystems. They include the plant pathogens Phytophthora infestans, Phytophthora palmivora, Phytophthora ramorum, Plasmopara obducens, and the animal pathogens Aphanomyces invadans, Saprolegnia parasitica, and Halioticida noduliformans. For each species, we describe its pathology, importance, and impact, discuss why it is an emerging threat, and briefly review current research activities

    Maximising Synergy among Tropical Plant Systematists, Ecologists, and Evolutionary Biologists

    Get PDF
    Closer collaboration among ecologists, systematists, and evolutionary biologists working in tropical forests, centred on studies within long-term permanent plots, would be highly beneficial for their respective fields. With a key unifying theme of the importance of vouchered collection and precise identification of species, especially rare ones, we identify four priority areas where improving links between these communities could achieve significant progress in biodiversity and conservation science: (i) increasing the pace of species discovery; (ii) documenting species turnover across space and time; (iii) improving models of ecosystem change; and (iv) understanding the evolutionary assembly of communities and biomes

    Dose prediction for repurposing nitazoxanide in SARS-CoV-2 treatment or chemoprophylaxis

    Get PDF
    Background Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) has been declared a global pandemic and urgent treatment and prevention strategies are needed. Nitazoxanide, an anthelmintic drug has been shown to exhibit in vitro activity against SARS‐CoV‐2. The present study used physiologically‐based pharmacokinetic (PBPK) modelling to inform optimal doses of nitazoxanide capable of maintaining plasma and lung tizoxanide exposures above the reported SARS‐CoV‐2 EC90. Methods A whole‐body PBPK model was validated against available pharmacokinetic data for healthy individuals receiving single and multiple doses between 500–4000 mg with and without food. The validated model was used to predict doses expected to maintain tizoxanide plasma and lung concentrations above the EC90 in >90% of the simulated population. PopDes was used to estimate an optimal sparse sampling strategy for future clinical trials. Results The PBPK model was successfully validated against the reported human pharmacokinetics. The model predicted optimal doses of 1200 mg QID, 1600 mg TID, 2900 mg BID in the fasted state and 700 mg QID, 900 mg TID and 1400 mg BID when given with food. For BID regimens an optimal sparse sampling strategy of 0.25, 1, 3 and 12h post dose was estimated. Conclusion The PBPK model predicted tizoxanide concentrations within doses of nitazoxanide already given to humans previously. The reported dosing strategies provide a rational basis for design of clinical trials with nitazoxanide for the treatment or prevention of SARS‐CoV‐2 infection. A concordant higher dose of nitazoxanide is now planned for investigation in the seamless phase I/IIa AGILE trial (www.agiletrial.net)

    Publisher Correction: Science diplomacy for plant health

    Get PDF
    Correction to: Nature Plants https://doi.org/10.1038/s41477-020-0744-x, published online 11 August 2020.1 Pág.An amendment to this paper has been published and can be accessed via a link at the top of the paper.In the version of this Comment originally published, in the penultimate paragraph of the section “Steps towards global phytosanitary research coordination” the second sentence incorrectly defined IPPC as ‘Intergovernmental Panel on Climate Change’, though it was cor rectly defined earlier as ‘International Plant Protection Convention’; the sentence has now been corrected to read “Ideally, they should benefit from the reputation of a United Nations mandate convention, such as the IPPC…”Peer reviewe

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p&lt;0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p&lt;0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p&lt;0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP &gt;5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

    Get PDF
    BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

    Get PDF
    Background A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials

    Golden-Gate compatible Magnaporthe oryzae Agrobacterium transformation vectors

    No full text
    The Golden Gate cloning system uses standardised parts to facilitate the assembly of multiple transcriptional units, to ensure that future work with these genes can be carried out with ease (Patron et al., 2015 New Phytologist, v. 208, p. 13-19).<br><div><br></div><div>We have developed the Golden Gate compatible vector pBHt2G-RFP (Addgene #107162) from the pCAMBIA-derived (Mullins et al., 2001) pBHt2G vector (Khang et al, 2010). The vector was domesticated through removal of BsaI cloning sites. An RFP-marker was inserted, which is expressed in E. coli, allowing for red-white selection of transformants. The marker is lost during the Golden Gate reaction, as it is replaced by the inserted transcriptional units.</div><div><br></div><div>Vector, sequence information and plasmid maps are available from Addgene https://www.addgene.org/107162//</div
    corecore