140 research outputs found

    Into the firing line: civilian ingress during the 2013 Red October bushfires, Australia

    Get PDF
    A major issue for bushfire management arises when residents decide to leave a safe area and enter the fire zone to rescue or defend their property, pets, loved ones or other assets. Here, we use statistical and narrative analyses of data from an online survey and semi-structured interviews with residents affected by the 2013 Red October bushfires in New South Wales, Australia. The survey results revealed that of the 58 % of respondents who were not at home at the time the threat became apparent, 65 % indicated that they attempted to get home prior to the arrival of the fire front. In doing so, many endangered themselves, their family, friends and emergency services personnel. This paper discusses the shortcomings of bushfire survival plans and official risk communication, which do not cater well for household units that are divided or unattended when a bushfire starts. Findings suggest that to enhance bushfire safety and preparedness, emergency managers should acknowledge and speak more directly to the specific constraints to action for particular social groups at the wildland-urban interface, including families with school-age children, commuters and absentee landholders

    Germination responses of a dry sclerophyll forest soil-stored seedbank to fire related cues

    Get PDF
    Fire is an integral component of many ecosystems worldwide. Many plant species require fire-related cues, primarily heat and smoke, to trigger germination. Despite the importance of this process, the responses of many Australian species to these cues are unknown. Without this knowledge fire management strategies may be developed that are inappropriate for individual species and vegetation communities. In this study we examined the responses of a dry sclerophyll forest seed bank to heat and smoke germination cues. Analysis was possible for 48 taxa within the soil seedbank with 34 of these showing a response to one or both of the germination cues. 10 species responded to the heat treatment, 11 species responded to the smoke treatment and 13 species responded to both the heat and smoke treatments. Germination cues acted independently for all species considered. Results in this study were consistent with published reports for most species, although some differences were seen at the species and genus level. The study highlights the importance of fire-related cues in enhancing germination of a large proportion of the species occurring in dry sclerophyll forests

    Modelling the response of surface fuel to climate change across south-eastern Australia: consequences for future fire regimes

    Get PDF
    Geophysical Research Abstracts of EGU General Assembly 2014, held 27 April - 2 May, 2014 in Vienna, Austria

    Modelling ignition probability for human- and lightning-caused wildfires in Victoria, Australia

    Get PDF
    Wildfires pose a significant risk to people and property, which is expected to grow with urban expansion into fire-prone landscapes and climate change causing increases in fire extent, severity and frequency. Identifying spatial patterns associated with wildfire activity is important for assessing the potential impacts of wildfires on human life, property and other values. Here, we model the probability of fire ignitions in vegetation across Victoria, Australia, to determine the key drivers of human- and lightning-caused wildfire ignitions. In particular, we extend previous research to consider the role that fuel moisture has in predicting ignition probability while accounting for environmental and local conditions previously identified as important. We used Random Forests to test the effect of variables measuring infrastructure, topography, climate, fuel and soil moisture, fire history, and local weather conditions to investigate what factors drove ignition probability for human- and lightning-caused ignitions. Human-caused ignitions were predominantly influenced by measures of infrastructure and local weather. Lightning-sourced ignitions were driven by fuel moisture, average annual rainfall and local weather. Both human- and lightning-caused ignitions were influenced by dead fuel moisture with ignitions more likely to occur when dead fuel moisture dropped below 20 %. In future, these models of ignition probability may be used to produce spatial likelihood maps, which will improve our models of future wildfire risk and enable land managers to better allocate resources to areas of increased fire risk during the fire season

    Cost-effective prescribed burning solutions vary between landscapes in eastern Australia

    Get PDF
    Fire management agencies undertake a range of fire management strategies in an attempt to reduce the risk posed by future wildfires. This can include fuel treatments (prescribed burning and mechanical removal), suppression and community engagement. However, no agency has an unlimited budget and numerically optimal solutions can rarely be implemented or may not even exist. Agencies are trying to quantify the extent to which their management actions reduce risk across multiple values in the most cost-effective manner. In this paper, we examine the cost-effectiveness of a range of prescribed burning strategies across multiple landscapes in south-eastern Australia. Landscapes considered include vegetated areas surrounding the cities of Hobart, Melbourne, Adelaide, Canberra, and Sydney. Using a simulation approach, we examine the potential range of fires that could occur in a region with varying levels of edge and landscape prescribed burning treatment regimes. Damages to assets are measured for houses, lives, transmission lines, carbon and ecological assets. Costs of treatments are estimated from published models and all data are analyzed using multi-criteria decision analysis. Cost-effectiveness of prescribed burning varies widely between regions. Variations primarily relate to the spatial configuration of assets and natural vegetation. Regions with continuous urban interface adjacent to continuous vegetation had the most cost-effective fuel treatment strategies. In contrast, those regions with fragmented vegetation and discontinuous interfaces demonstrated the lowest cost-effectiveness of treatments. Quantifying the extent to which fuel treatments can reduce the risk to assets is vital for determining the location and extent of treatments across a landscape

    The Proximal Drivers of Large Fires: A Pyrogeographic Study

    Get PDF
    Variations in global patterns of burning and fire regimes are relatively well measured, however, the degree of influence of the complex suite of biophysical and human drivers of fire remains controversial and incompletely understood. Such an understanding is required in order to support current fire management and to predict the future trajectory of global fire patterns in response to changes in these determinants. In this study we explore and compare the effects of four fundamental controls on fire, namely the production of biomass, its drying, the influence of weather on the spread of fire and sources of ignition. Our study area is southern Australia, where fire is currently limited by either fuel production or fuel dryness. As in most fire-prone environments, the majority of annual burned area is due to a raelatively small number of large fires. We train and test an Artificial Neural Networks ability to predict spatial patterns in the probability of large fires (>1,250 ha) in forests and grasslands as a function of proxies of the four major controls on fire activity. Fuel load is represented by predicted forested biomass and remotely sensed grass biomass, drying is represented by fraction of the time monthly potential evapotranspiration exceeds precipitation, weather is represented by the frequency of severe fire weather conditions and ignitions are represented by the average annual density of reported ignitions. The response of fire to these drivers is often non-linear. Our results suggest that fuel management will have limited capacity to alter future fire occurrence unless it yields landscape-scale changes in fuel amount, and that shifts between, rather than within, vegetation community types may be more important. We also find that increased frequency of severe fire weather could increase the likelihood of large fires in forests but decrease it in grasslands. These results have the potential to support long-term strategic planning and risk assessment by fire management agencies.OP’s salary was provided by the NSW Rural Fire Service. MB was partly financially supported by the Bushfires and Natural Hazards Cooperative Research Centre

    Fire and biodiversity in the Anthropocene

    Get PDF
    The workshop leading to this paper was funded by the Centre Tecnològic Forestal de Catalunya and the ARC Centre of Excellence for Environmental Decisions. L.T.K. was supported by a Victorian Postdoctoral Research Fellowship (Victorian Government), a Centenary Fellowship (University of Melbourne), and an Australian Research Council Linkage Project Grant (LP150100765). A.R. was supported by the Xunta de Galicia (Postdoctoral Fellowship ED481B2016/084-0) and the Foundation for Science and Technology under the FirESmart project (PCIF/MOG/0083/2017). A.L.S. was supported by a Marie Skłodowska-Curie Individual Fellowship (746191) under the European Union Horizon 2020 Programme for Research and Innovation. L.R. was supported by the Australian Government’s National Environmental Science Program through the Threatened Species Recovery Hub. L.B. was partially supported by the Spanish Government through the INMODES (CGL2014-59742-C2-2-R) and the ERANET-SUMFORESTS project FutureBioEcon (PCIN-2017-052). This research was supported in part by the U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station.BACKGROUND Fire has shaped the diversity of life on Earth for millions of years. Variation in fire regimes continues to be a source of biodiversity across the globe, and many plants, animals, and ecosystems depend on particular temporal and spatial patterns of fire. Although people have been using fire to modify environments for millennia, the combined effects of human activities are now changing patterns of fire at a global scale—to the detriment of human society, biodiversity, and ecosystems. These changes pose a global challenge for understanding how to sustain biodiversity in a new era of fire. We synthesize how changes in fire activity are threatening species with extinction across the globe, highlight forward-looking methods for predicting the combined effects of human drivers and fire on biodiversity, and foreshadow emerging actions and strategies that could revolutionize how society manages fire for biodiversity in the Anthropocene. ADVANCES Our synthesis shows that interactions with anthropogenic drivers such as global climate change, land use, and biotic invasions are transforming fire activity and its impacts on biodiversity. More than 4400 terrestrial and freshwater species from a wide range of taxa and habitats face threats associated with modified fire regimes. Many species are threatened by an increase in fire frequency or intensity, but exclusion of fire in ecosystems that need it can also be harmful. The prominent role of human activity in shaping global ecosystems is the hallmark of the Anthropocene and sets the context in which models and actions must be developed. Advances in predictive modeling deliver new opportunities to couple fire and biodiversity data and to link them with forecasts of multiple drivers including drought, invasive plants, and urban growth. Making these connections also provides an opportunity for new actions that could revolutionize how society manages fire. Emerging actions include reintroduction of mammals that reduce fuels, green fire breaks comprising low-flammability plants, strategically letting wildfires burn under the right conditions, managed evolution of populations aided by new genomics tools, and deployment of rapid response teams to protect biodiversity assets. Indigenous fire stewardship and reinstatement of cultural burning in a modern context will enhance biodiversity and human well-being in many regions of the world. At the same time, international efforts to reduce greenhouse gas emissions are crucial to reduce the risk of extreme fire events that contribute to declines in biodiversity. OUTLOOK Conservation of Earth’s biological diversity will be achieved only by recognition of and response to the critical role of fire in shaping ecosystems. Global changes in fire regimes will continue to amplify interactions between anthropogenic drivers and create difficult trade-offs between environmental and social objectives. Scientific input will be crucial for navigating major decisions about novel and changing ecosystems. Strategic collection of data on fire, biodiversity, and socioeconomic variables will be essential for developing models to capture the feedbacks, tipping points, and regime shifts characteristic of the Anthropocene. New partnerships are also needed to meet the challenges ahead. At the local and regional scale, getting more of the “right” type of fire in landscapes that need it requires new alliances and networks to build and apply knowledge. At the national and global scale, biodiversity conservation will benefit from greater integration of fire into national biodiversity strategies and action plans and in the implementation of international agreements and initiatives such as the UN Convention on Biological Diversity. Placing the increasingly important role of people at the forefront of efforts to understand and adapt to changes in fire regimes is central to these endeavors.PostprintPeer reviewe

    Management of Amphibian Populations in Booderee National Park, South-Eastern Australia

    Get PDF
    Often land set aside for conservation becomes a multiple use area, which forces land managers to balance biodiversity values against competing needs. Booderee National Park is an important conservation reserve for a range of amphibian species in south-eastern Australia. The Park includes a number of townships, defence facilities, and recreation areas, as well as land for conservation. We examined amphibian communities in the area and related these to broad habitat features and identified potential threats to the long term viability of these populations. Two distinct assemblages occurred within the Park that could be related to broad habitat features of the breeding site (i.e., wet heath and open water wetlands). There are three potential threats to the viability of these populations: (1) inappropriate fire regimes; (2) introduced predators; and (3) infection by the chytrid fungus. While fire regimes and predators can be managed, the chytrid fungus cannot and therefore represents the primary concern for amphibians in the area
    corecore