156 research outputs found

    Fluorescence from a few electrons

    Full text link
    Systems containing few Fermions (e.g., electrons) are of great current interest. Fluorescence occurs when electrons drop from one level to another without changing spin. Only electron gases in a state of equilibrium are considered. When the system may exchange electrons with a large reservoir, the electron-gas fluorescence is easily obtained from the well-known Fermi-Dirac distribution. But this is not so when the number of electrons in the system is prevented from varying, as is the case for isolated systems and for systems that are in thermal contact with electrical insulators such as diamond. Our accurate expressions rest on the assumption that single-electron energy levels are evenly spaced, and that energy coupling and spin coupling between electrons are small. These assumptions are shown to be realistic for many systems. Fluorescence from short, nearly isolated, quantum wires is predicted to drop abruptly in the visible, a result not predicted by the Fermi-Dirac distribution. Our exact formulas are based on restricted and unrestricted partitions of integers. The method is considerably simpler than the ones proposed earlier, which are based on second quantization and contour integration.Comment: 10 pages, 3 figures, RevTe

    Alzheimer disease genetic risk factor APOE e4, and cognitive abilities in 111,739 UK Biobank participants

    Get PDF
    Background: the apolipoprotein (APOE) e4 locus is a genetic risk factor for dementia. Carriers of the e4 allele may be more vulnerable to conditions that are independent risk factors for cognitive decline, such as cardiometabolic diseases. Objective: we tested whether any association with APOE e4 status on cognitive ability was larger in older ages or in those with cardiometabolic diseases. Subjects: UK Biobank includes over 500,000 middle- and older aged adults who have undergone detailed medical and cognitive phenotypic assessment. Around 150,000 currently have genetic data. We examined 111,739 participants with complete genetic and cognitive data. Methods: baseline cognitive data relating to information processing speed, memory and reasoning were used. We tested for interactions with age and with the presence versus absence of type 2 diabetes (T2D), coronary artery disease (CAD) and hypertension. Results: in several instances, APOE e4 dosage interacted with older age and disease presence to affect cognitive scores. When adjusted for potentially confounding variables, there was no APOE e4 effect on the outcome variables. Conclusions: future research in large independent cohorts should continue to investigate this important question, which has potential implications for aetiology related to dementia and cognitive impairment

    When do Anisotropic Magnetic Susceptibilities Lead to Large NMR Shifts? Exploring Particle Shape Effects in the Battery Electrode Material LiFePO4.

    Get PDF
    Materials used as electrodes in energy storage devices have been extensively studied with solid-state NMR spectroscopy. Due to the almost ubiquitous presence of transition metals, these systems are also often magnetic. While it is well known that the presence of anisotropic bulk magnetic susceptibility (ABMS) leads to broadening of resonances under MAS, we show that for mono-disperse and non-spherical particle morphologies, the ABMS can also lead to considerable shifts, which vary substantially as a function of particle shape. This, on one hand, complicates the interpretation of the NMR spectrum and the ability to compare the measured shift of different samples of the same system. On the other hand the ABMS shift provides a mechanism with which to derive the particle shape from the NMR spectrum. In this work, we present a methodology to model the ABMS shift, and relate it to the shape of the studied particles. The approach is tested on the 7^7Li NMR spectra of single crystals and powders of LiFePO4_4. The results show that the ABMS shift can be a major contribution to the total NMR shift in systems with large magnetic anisotropies and small hyperfine shifts, 7^7Li shifts for typical LiFePO4_4 morphologies varying by as much as 100 ppm. The results are generalised to demonstrate that the approach can be used as a means with which to probe the aspect ratio of particles. The work has implications for the analysis of NMR spectra of all materials with anisotropic magnetic susceptibilities, including diamagnetic materials such as graphite

    Low birth weight and features of neuroticism and mood disorder in 83 545 participants of the UK Biobank cohort

    Get PDF
    Background: Low birth weight has been inconsistently associated with risk of developing affective disorders, including major depressive disorder (MDD). To date, studies investigating possible associations between birth weight and bipolar disorder (BD), or personality traits known to predispose to affective disorders such as neuroticism, have not been conducted in large cohorts.Aims: To assess whether very low birth weight (<1500 g) and low birth weight (1500–2490 g) were associated with higher neuroticism scores assessed in middle age, and lifetime history of either MDD or BD. We controlled for possible confounding factors.Method: Retrospective cohort study using baseline data on the 83?545 UK Biobank participants with detailed mental health and birth weight data. Main outcomes were prevalent MDD and BD, and neuroticism assessed using the Eysenck Personality Inventory Neuroticism scale - Revised (EPIN-R)Results: Referent to normal birth weight, very low/low birth weight were associated with higher neuroticism scores, increased MDD and BD. The associations between birth weight category and MDD were partially mediated by higher neuroticism.Conclusions: These findings suggest that intrauterine programming may play a role in lifetime vulnerability to affective disorders

    Using exomarkers to assess mitochondrial reactive species in vivo

    Get PDF
    Background: The ability to measure the concentrations of small damaging and signalling molecules such as reactive oxygen species (ROS) in vivo is essential to understanding their biological roles. While a range of methods can be applied to in vitro systems, measuring the levels and relative changes in reactive species in vivo is challenging. Scope of review: One approach towards achieving this goal is the use of exomarkers. In this, exogenous probe compounds are administered to the intact organism and are then transformed by the reactive molecules in vivo to produce a diagnostic exomarker. The exomarker and the precursor probe can be analysed ex vivo to infer the identity and amounts of the reactive species present in vivo. This is akin to the measurement of biomarkers produced by the interaction of reactive species with endogenous biomolecules. Major conclusions and general significance: Our laboratories have developed mitochondria-targeted probes that generate exomarkers that can be analysed ex vivo by mass spectrometry to assess levels of reactive species within mitochondria in vivo. We have used one of these compounds, MitoB, to infer the levels of mitochondrial hydrogen peroxide within flies and mice. Here we describe the development of MitoB and expand on this example to discuss how better probes and exomarkers can be developed. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. Abbreviations: EPR, electron paramagnetic resonance; GFP, green fluorescent protein; 4-HNE, 4-hydroxynonenal; MitoB, 3-(dihydroxyboronyl)benzyltriphenylphosphonium bromide; MitoP, (3-hydroxybenzyl)triphenylphosphonium bromide; ROS, reactive oxygen species; SOD, superoxide dismutase; TPMP, methyltriphenylphosphonium; TPP, triphenylphosphonium catio

    Insights into the Exfoliation Process of V2O5\ub7 nH2O Nanosheet Formation Using Real-Time 51V NMR

    Get PDF
    Copyright \ua9 2019 American Chemical Society. Nanostructured hydrated vanadium oxides (V2O5\ub7nH2O) are actively being researched for applications in energy storage, catalysis, and gas sensors. Recently, a one-step exfoliation technique for fabricating V2O5\ub7nH2O nanosheets in aqueous media was reported; however, the underlying mechanism of exfoliation has been challenging to study. Herein, we followed the synthesis of V2O5\ub7nH2O nanosheets from the V2O5 and VO2 precursors in real time using solution- and solid-state 51V NMR. Solution-state 51V NMR showed that the aqueous solution contained mostly the decavanadate anion [H2V10O28]4- and the hydrated dioxovanadate cation [VO2\ub74H2O]+, and during the exfoliation process, decavanadate was formed, while the amount of [VO2\ub74H2O]+ remained constant. The conversion of the solid precursor V2O5, which was monitored with solid-state 51V NMR, was initiated when VO2 was in its monoclinic forms. The dried V2O5\ub7nH2O nanosheets were weakly paramagnetic because of a minor content of isolated V4+. Its solid-state 51V signal was less than 20% of V2O5 and arose from diamagnetic V4+ or V5+.This study demonstrates the use of real-time NMR techniques as a powerful analysis tool for the exfoliation of bulk materials into nanosheets. A deeper understanding of this process will pave the way to tailor these important materials. \ua
    • …
    corecore