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Abstract

The combination of new magnet and probe technology with increasingly sophisticated

pulse sequences has resulted in an increase in the number of applications of solid-

state nuclear magnetic resonance (NMR) spectroscopy to paramagnetic materials and

biomolecules. The interaction between the paramagnetic metal ions and the NMR-

active nuclei often yields crucial structural or electronic information about the system.

In particular the application of magic-angle spinning (MAS) has been shown to be

crucial to obtaining resolution that is sufficiently high for studying complex systems.

However such systems are generally extremely difficult to study as the shifts and shift

anisotropies resulting from the same paramagnetic interaction broaden the spectrum

beyond excitation and detection, and the paramagnetic relaxation enhancement (PRE)

shortens the lifetimes of the excited signals considerably. One specific area that has

therefore been receiving significant attention in recent years, and for which great im-

provements have been seen, is the development of broadband NMR sequences. The

development of new excitation and inversion sequences for paramagnetic systems un-

der MAS has often made the difference between the spectrum being unobtainable, and

a complete NMR study being possible. However the development of the new sequences

must explicitly take account of the modulation of the anisotropic shift interactions due

IReceived October 27, 2014
IIEdited by J. W. Emsley and J. Feeney
∗Corresponding author
Email address: guido.pintacuda@ens-lyon.fr (Guido Pintacuda)

1Present address: Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, Cam-
bridgeshire, CB2 1EW, UK

Preprint submitted to Progress in Nuclear Magnetic Resonance Spectroscopy December 10, 2014



to the sample rotation, with the resulting spin dynamics often being complicated con-

siderably. The NMR sequences can either be helped or hindered by MAS, with the

efficiency of some pulse schemes being destroyed, and others being greatly enhanced.

This review describes the pulse sequences that have recently been proposed for broad-

band excitation, inversion, and refocussing of the signal components of paramagnetic

systems. In doing so we define exactly what is meant by “broadband” under spinning

conditions, and what the perfect pulse scheme should deliver. We also give a unified

description of the spin dynamics under MAS which highlights the strengths and weak-

nesses of the various schemes, and which can be used as guidance for future research

in this area. All the reviewed pulse schemes are evaluated both with simulations and

experimental data obtained on the battery material LiFe0.5Mn0.5PO4 which is typical of

the complexity of the paramagnetic systems that are currently under study.

Keywords: Solid-state NMR, Magic-angle spinning, Paramagnetic, Broadband,
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1. Introduction

Solid-state NMR has become established as an important method for structural

characterisation in chemistry, biology, and the materials sciences [1]. One area that

has seen increased activity in recent years is the development of new NMR methods

for studying the structural and electronic properties of paramagnetic solids, and their

application to systems of interest [2–11]. The interactions between the NMR-active

nuclei and the unpaired electrons of the paramagnetic centres potentially yield impor-

tant information about the system ranging from the crystal structure to the electron
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delocalisation. However these same interactions are also at the root of the problems

encountered when attempting to acquire NMR data of these systems. The interactions

give rise to (1) large shifts and shift anisotropies (SAs) in the NMR spectrum, result-

ing in inefficient and non-broadband excitation of the nuclei with practicable radio-

frequency (RF) powers, and (2) large paramagnetic relaxation enhancements (PREs)

which cause the coherences to decay rapidly once they have been excited. This results

in many commonly-used conventional techniques often failing to yield any data, and

even when the spectrum has been successfully recorded the low sensitivity and poor

resolution may render it uninterpretable.

It is of crucial importance to use a broadband pulse sequences to manipulate the nu-

clear spins in order to obtain meaningful NMR data. Such sequences should be applica-

ble to simple excitation to obtain a conventional one-dimensional spectrum, and ideally

be easily incorporated into more complex experiments such as homo- and heteronuclear

correlation spectroscopy. Recently a number of broadband NMR techniques have been

published for solids under both static and magic-angle spinning (MAS) conditions. The

majority of experiments proposed for static powders have been designed for the NMR

of nuclei with large quadrupole moments in diamagnetic materials, but are also appli-

cable to spin-1/2 nuclei subject to paramagnetic interactions [12]. Notable examples

of experiments include the “ultra-wideline” pulse sequences of Schurko et al. where

wideband, uniform rate, and smooth truncation (WURST) frequency-swept pulses are

incorporated into the Carr–Purcell–Meiboom-Gill (CPMG) sequence. The resulting

WURST-CPMG experiment is combined with frequency-stepped acquisition, where

several acquisitions are made with the carrier frequency tuned to different parts of the

spectrum and the results added to give the actual spectrum [13]. The WURST pulses

have also been incorporated into the cross-polarisation sequence, giving the broadband

adiabatic inversion cross polarization (BRAIN-CP) experiment, allowing the transfer

of polarisation from 1H to quadrupolar nuclei with large quadrupole moments [14].

These experiments have been very successful in analysing the NMR parameters

for a single nuclear site. However in order to be able to differentiate between sev-

eral nuclear sites with different isotropic shifts we need to employ magic-angle spin-

ning [15]. In order to average the large SA and obtain the best possible resolution, it
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was shown by Ishii et al. that the optimum experimental conditions include spinning

at the largest practicable spinning frequency [16]. The substantial improvement ob-

tained by spinning fast is evident from Fig. 1 which shows 7Li MAS NMR spectra of

LiFe0.5Mn0.5PO4. The spectrum at 20 kHz MAS in Fig. 1(a) is broad and featureless,

with the individual sidebands barely perceptible. Better resolution between neighbour-

ing sidebands is obtained by doubling the MAS frequency to 40 kHz (Fig. 1(b)), and at

60 kHz MAS there is baseline resolution (Fig. 1(c)).

Very fast MAS must be accompanied by the use of broadband NMR schemes that

have been optimised for spinning samples. To date few practical pulse schemes have

been proposed for NMR under such conditions, the most notable being frequency-

stepping under MAS conditions [17, 18] high-power [19] and low-power adiabatic

pulses [20–24], and the application of the Delays Alternating with Nutation for Tai-

lored Excitation (DANTE) [25]. This article reviews these techniques and compares

their effectiveness at delivering broadband excitation, refocussing, and inversion. A

full theoretical treatment is provided, incorporating the complexity of the anisotropic

interactions under MAS, which identifies why and under what conditions the sequences

work. In particular the important similarities and differences are highlighted which, in

addition to unifying the descriptions in the literature which, at first glance may appear

very different, we anticipate will be of help in the design and implementation of new

sequences in the future.

This review is organised as follows. Section 2 summarises the high-resolution

NMR techniques that have hitherto been applied to paramagnetic systems, and sum-

marises which methods perform best for obtaining different spectra. We then discuss

the meaning of “broadband” when applied to spinning solids in Section 3, and highlight

important differences to static solids and isotropic solutions. The specialised broadband

NMR pulse schemes that are herein described and reviewed were applied to the battery

cathode material LiFe0.5Mn0.5PO4, thus obtaining new data which, in combination with

simulations, allow a direct comparison of the methods. The experimental and simula-

tion parameters are summarised in Section 4. The remaining sections provide theoret-

ical accounts of these specialised broadband pulse schemes when applied to paramag-

netic species in combination with MAS. The origin of the paramagnetic shift and SA
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Figure 1: The effect of faster MAS on the spectrum of a paramagnetic material. The examples shown are the
7Li spectrum of the olivine cathode material LiFe0.5Mn0.5PO4 acquired at 11.74 T, exhibiting large shifts
and shift anisotropies due to the hyperfine interactions between the Li nuclei and the unpaired electrons of
the surrounding Fe2+ and Mn2+ ions. The spectrum acquired at 20 kHz MAS is shown in (a) is broad and
featureless. Increasing the spinning frequency to (b) 40 kHz dramatically increases the resolution between
the neighbouring sidebands, and at 60 kHz MAS (c) we obtain baseline resolution. All spectra were acquired
with a 1.3 mm HX probe using the double-SHAP spin echo sequence as described in Section 7.3. The SHAP
was a tanh/tan pulse of RF field amplitude 455 kHz that swept through 5 MHz in 50 µs. Excitation at the start
of the sequence was achieved with a short, non-selective pulse of RF field amplitude 455 kHz, and length
0.55 µs. 8192 scans were acquired per spectrum with a recycle delay of 100 ms.
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is described in Section 5 followed by a description of the SA under MAS conditions,

an understanding of which is crucial if the subtleties of the RF pulse schemes is to be

fully appreciated. Section 6 describes these pulse schemes, all of which were originally

developed for application to isotropic NMR of solutions or magnetic resonance imag-

ing (MRI). This section also includes a description of the excitation sculpting principle

[26, 27] when applied under MAS, which allows us to employ any inversion pulse to

refocussing of coherences. The application of these pulse schemes to spinning solids

is described in Section 7, with the interesting effects that are observed with an em-

phasis of how MAS either helps or hinders their effectiveness. Finally in Section 8 we

give a summary of the advantages and disadvantages of the various broadband methods

when applied to different types of system, and provide a series of recommendations for

practical NMR.

2. General recommendations for NMR of paramagnetic systems

For paramagnetic systems containing several distinct nuclear sites, Ishii demon-

strated that the best resolution and sensitivity is obtained by using the highest spinning

frequency that is practicable [16]. For a few years now the state of the art has been

60 kHz MAS, and recently faster spinning probes capable of MAS frequencies up to

100 kHz have become available. The reduction in sensitivity from the smaller sample

volume of the small-diameter rotors that are capable of spinning at such frequencies is

not as serious as one might expect due to the more favourable filling factor. This also

allows us to use larger RF field amplitudes, which is an attractive prospect for exciting

broad spectra. Ishii also recommended that, where applicable, heteronuclear decou-

pling sequences are not employed because it is best to rely on the MAS to average out

the dipolar coupling interactions. The reason for this is that, except in cases where the

paramagnetic interactions are relatively small, the improvement in resolution and co-

herence lifetimes obtained by heteronuclear decoupling is negligible at best, since the

dipolar broadening is dominated by paramagnetic effects and the conventional decou-

pling sequences are not sufficiently broadband to be effective. In fact, in some cases

the decoupling sequence can have a deleterious effect on the spectrum. An additional
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advantage obtained by not using decoupling sequences is that the heating effects in-

duced by the RF irradiation of the whole sequence are reduced considerably, and so the

recycle delay needs only to allow complete longitudinal relaxation. For paramagnetic

systems the longitudinal relaxation times T1 experience a substantial PRE from the

paramagnetic centre, and are usually of the order 100 µs to 10 ms, allowing between

10s and 100s of scans to be acquired per second. Thus even though a broad distribution

of spectral intensity renders a very low signal-to-noise ratio per scan, the short recy-

cle delay means that a usable signal-to-noise ratio can be obtained with a practicable

experiment time.

For many years cross-polarisation (CP) has been a staple NMR technique for het-

eronuclear coherence transfer by irradiation of both nuclei with spin-lock pulses with

RF field amplitudes that satisfy that Hartmann–Hahn matching condition [28]. How-

ever CP is generally inefficient when applied to paramagnetic systems because the long

contact pulses are not sufficiently broadband to spin lock effectively over the whole

spectral bandwidth. For MAS frequencies up to 30 kHz, and for small-to-moderate

paramagnetic shifts and SAs it has been shown that more efficient coherence transfer

can be achieved by using sequences which employ short, high-power pulses with a

greater bandwidth. Notable examples of pulse sequences that have been applied suc-

cessfully are TEDOR [6], the dipolar INEPT [29], and the dipolar HSQC experiments

[30]. However a general solution to the problem of heteronuclear coherence transfer

for systems subject to large paramagnetic interactions under faster MAS conditions has

so far proved elusive.

One of the most widely-used NMR experiments for paramagnetic materials is the

spin echo [31], as it allows us to obtain uniform phase over the wide spectral range

that cannot be obtained with the single-pulse experiment. However, as discussed in

Section 6, the conventional 180◦ refocussing pulse is very intolerant of large chemical-

shift dispersion and RF inhomogeneity effects making it ill-suited for broadband NMR.

Recently alternative refocussing schemes have found widespread use such as those

using short high-powered adiabatic pulses (SHAPs) [19]. Examples of applications

can be found in the studies of organometallic lanthanide complexes [32], and battery

materials [33–36]. This scheme is described in detail in Section 7.
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3. What is broadband NMR?

Before we launch ourselves into a detailed discussion of the advantages and disad-

vantages of the various broadband NMR sequences that are available to date, we should

first consider exactly what we mean by broadband NMR under MAS conditions.

For spin systems in isotropic environments, either in solution or in the solid state,

the term broadband has a straightforward meaning; it refers to the range of isotropic

shifts for which the spins can be excited, inverted, or refocussed with the same ef-

ficiency, which is preferably 100%. The ability of the pulse or pulse sequence to

achieve this aim can be quantified by its bandwidth, which is the range of frequen-

cies for which the efficiency of excitation, inversion, or refocussing is greater than a

certain (pre-defined) fraction of the maximum, say 90%.

For static solids where the spins are also subject to anisotropic interactions, we

must account for the effect of the anisotropic contribution to the shift in our definition

of broadband. The anisotropic contribution to the shift is, by definition, dependent of

the orientation of the crystallite with respect to the external magnetic field. In a powder

sample there are contributions from different crystallite orientations, each of which

gives a spectral line in a position that is the sum of the isotropic and anisotropic shifts,

and so the observed spectrum is a broadened continuum of intensity over a range that is

given by the size of the anisotropy of the shift tensor [37]. The definition of broadband

must be extended to include not only excitation over the range of isotropic shifts, but

also over the full range of the shift anisotropy. For static solids this extension to the

definition is trivial as the isotropic and anisotropic shifts behave identically, and we

define the bandwidth as the range of frequencies (rather than isotropic frequencies)

over which the required degree of excitation, inversion, or refocussing is attained. The

pulses and pulse sequences that we can use to achieve broadband NMR are then the

same as those used for isotropic systems, with the difference that they must usually be

parameterized for a larger bandwidth as the shift anisotropies may be larger than the

range of isotropic shifts.

On the introduction of MAS the situation becomes more complicated [15]. The

anisotropic contribution to the shift now behaves in a very different way to the isotropic
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contribution. Whereas the former remains constant during the sample rotation, the lat-

ter is constantly changing as the MAS constantly changes the orientation of all the

crystallites. The variation of anisotropic shift is periodic, which gives rise to the side-

bands in the spectrum [38]. The time dependence of the anisotropic shift means that

the considerations that apply when designing a sequence for broadband NMR over a

range of isotropic shifts do not always apply to the anisotropic shift and vice versa.

Let us imagine a paramagnetic powder with a large anisotropic shift, to which we

apply a conventional constant-amplitude pulse that is resonant with the centreband.

For a crystallite with a given orientation the effective flip angle of the pulse is given by

ω1A0τp, where ω1 and τp are the RF field amplitude and duration of the pulse, and A0

is the intensity of the centreband in the sideband manifold of that crystallite, which is

normalised so that the sum of the squares of all the sideband intensities is unity [39].

For instance if we imagine a spin system subject to an axially-symmetric shift ten-

sor, the crystallites where the shift tensor is orientated along the magic angle with

respect to the external magnetic field are unaffected by MAS, and so give a spectrum

with all the spectral intensity is located in the centreband, as shown in Fig. 2(a). On

the other hand any crystallites with shift tensors not orientated at the magic angle will

exhibit a time modulation of the shift tensor during MAS, and so give a manifold of

sidebands as shown for an angle of 99.7◦ in Fig. 2(b). In the first case A0 = 1 and so

the optimum nominal flip angle for achieving perfect inversion is ω1τp = π, which is

the same as the effective flip angle of ω1A0τp. By contrast crystallites with A0 = 0.5

experience only an effective flip angle of π/2 which results in only 50% inversion. In

order to achieve perfect inversion of the sideband manifold for this crystallite we must

double the nominal flip angle ω1τp to 2π with the result that the effective flip angle ex-

perienced by this crystallite is now π. However the effect of this new pulse on the first

crystallite orientated along the magic angle is that the effective flip angle is now 2π,

with the result that there is no net movement of the magnetization. We therefore have

the interesting situation where a pulse that is calibrated to invert the sideband manifold

for a particular crystallite cannot invert the sideband manifold of a second crystallite

where the sidebands are spread over a smaller frequency range, in this case comprising

only the centreband!
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Figure 2: Schematic of the effect of tensor orientation on the MAS spectrum of a single crystallite with an
axially-symmetric shift tensor. In (a) is shown a shift tensor orientated at the magic angle (54.7◦) with respect
to the external field, and the corresponding spectrum in which only the centreband is present. Changing the
orientation of the tensor so that it is at 99.7◦ with respect to the field gives a complex sideband manifold as
shown in (b). The shift tensor is represented by the filled ellipsoid.
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It therefore follows that we have to think about broadband NMR in a different way

to static samples. A broadband pulse or pulse sequence must achieve the following:

1. For different nuclear sites, the pulse must excite, invert, or refocus over a suffi-

cient range of isotropic shifts;

2. For different nuclear sites, the pulse must excite, invert, or refocus over a suffi-

cient range of shift anisotropies;

3. For each individual site, the pulse must achieve 100% excitation, inversion, or

refocussing for all crystallite orientations.

All three conditions are equivalent when dealing with static systems, whereas condition

2 and condition 3 become distinct from condition 1 and each other when the sample is

spinning.

4. Experimental and simulated examples

Some experimental and simulated examples are given to illustrate the different

properties of the various broadband RF sequences that are discussed.

4.1. A paramagnetic benchmark material

The chosen paramagnetic system to illustrate the various concepts and properties of

the broadband NMR sequences is the olivine LiFe0.5Mn0.5PO4, which is a cathode ma-

terial [40, 41], comprising TMO6 octahedra and PO4 tetrahedra, the crystal structure of

which is shown in Figure 3. The transition metal (TM) sites are occupied either by Fe2+

or Mn2+ which are present as a solid solution in a 1:1 ratio. The Li atoms occupy the

one-dimensional channels and form LiO6 octahedra, the O atoms of which coordinate

to six transition metal ions. Since each TM site can be occupied by either Mn or Fe

there are a number of distinct Li sites with different paramagnetic shifts. The 7Li chem-

ical shifts are dominated by paramagnetic effects from the nearest-neighbour TMs with

important contributions from the next-nearest neighbours [42]. The range of isotropic

shifts is comparatively small at approximately 90 ppm centred at 0 ppm. There is also

a significant inhomogeneous broadening of the sidebands of 90 ppm, which dominates

their linewidths. This results in the isotropic shifts of the sites being unresolved in the
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Figure 3: The structure of the olivine LiFe0.5Mn0.5PO4. The olivine crystal structure is shown in (a) showing
the TMO6 octahedra, PO4 tetrahedra, and one-dimensional channels occupied by Li. In (b) is shown the
local structure of the P site, which is coordinating to five transition-metal ion sites AB–F, each the source
of a pathway PAB–PF which contributes to the total paramagnetic shift. Adapted with permission from Ref.
[33]. Copyright 2012 American Chemical Society.

NMR spectrum. Each 7Li site is also subject to a large shift anisotropy primarily due

to the dipolar couplings to the unpaired electrons. The longitudinal relaxation times

T1 and coherence lifetimes T ′2 are enhanced by paramagnetic effects, and take the bulk

values of 1.88 ms and 1.59 ms at a magnetic field of 11.74 T.

The isotropic shifts of the 31P nuclei are dominated by a contact interaction be-

tween the nucleus and the unpaired electrons of the five TM ions that coordinate via

the bridging O atoms. Longer-range contributions to the paramagnetic shifts from more

distant transition metals are negligible, and so there are 32 distinct sites. In contrast to
7Li the range of shifts for 31P is very large, ranging from 3500 ppm for the all-Fe site to

7900 ppm for the all-Mn site [33], and so the isotropic shifts are in principle resolvable.

However in common with 7Li the dipolar couplings between 31P nuclei and electrons

give rise to large shift anisotropies. There is also significant inhomogeneous broaden-

ing of the individual sidebands. The longitudinal relaxation times T1 and coherence

lifetimes T ′2 for 31P are significantly shorter than for 7Li. The T1 relaxation times at

11.74 T field vary for the different sites from 261 µs for the all-Mn site to 524 µs for

the all-Fe site, and the T ′2 values vary from 132 µs (all-Mn) to 334 µs (all-Fe) [33].

4.2. Experimental details

All experimental spectra were acquired on a Bruker Avance III 500 spectrometer

at a field of 11.74 T, and operating at Larmor frequencies of 194 MHz and 202 MHz
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for 7Li and 31P respectively. The one-dimensional 7Li spectra were acquired using a

double-adiabatic spin echo, as described in Section 6.5 with a peak RF field amplitude

of 455 kHz for all pulses. The one-dimensional 31P spectra were acquired using the

same pulse sequence with a peak RF field amplitude of 417 kHz for all pulses. A

standard 90◦ pulse was used for excitation, and refocusing was achieved using two

tanh/tan short high-powered adiabatic pulses (SHAPs) [19, 43] that are swept through

5 MHz with a pulse duration of 50 µs. All other experimental details are as given in

the figure captions.

4.3. Simulation details

All simulations were performed using SPINEVOLUTION version 3.4.5 [44]. The

paramagnetic shift and SAs were modelled with a standard chemical shift tensor with

an anisotropy of +200 kHz and asymmetry parameter of 0.3. Simulations of powder

samples used (α, β) averaging according to the Lebedev octant scheme [45] in combina-

tion with γ-averaging, where α, β, and γ are the Euler angles describing the orientation

of the crystallite in the rotor reference frame.

5. The chemical shifts of paramagnetic systems

Before reviewing the specific NMR methods used for the broadband excitation of

paramagnetic systems we will provide a summary of the interactions that are present

in these materials, and show why special care is needed when studying these systems.

Firstly we will give an overview of the form of the paramagnetic shift, including a

discussion on the size of the interactions, which is important when considering the

range of frequencies over which we need to excite. The topic of paramagnetic shifts

has been reviewed in detail by Bertini, Luchinat, and Parigi [46, 47], and by Kaupp and

Köhler [48]. Secondly we will give a description of the paramagnetic interactions under

magic-angle spinning (MAS) conditions [38]. This formalism will be presented in

detail as it extremely important for the following description of pulse schemes applied

to spinning solids.
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5.1. Paramagnetic shifts

The electron paramagnetic resonance (EPR) Hamiltonian describing the interaction

between a spin-1/2 nucleus I and a source of unpaired electrons with total spin S is

given by the Hamiltonian ĤEPR in units of energy:

ĤEPR = −~γIB0 · (1 − σorb) · Î + µBB0 · g · Ŝ + Ŝ ·A · Î + Ŝ ·D · Ŝ. (1)

In Eq. (1) Î and Ŝ are the angular momentum operators for the nuclear and total elec-

tronic spins, B0 is the external magnetic field, µB is the Bohr magneton, ~ is Planck’s

constant divided by 2π, and γI is a nuclear gyromagnetic ratio. The Zeeman interac-

tion of the bare nucleus is described by the coupling of Î with B0 through the identity

matrix 1. This is modified by inclusion of the orbital contribution of the open shell

to the chemical shielding σorb, which is a generalisation of the chemical shielding that

was calculated by Ramsey for closed-shell systems [49]. The spatial dependence of

the electron Zeeman interaction is described by the g-tensor g, and is analogous to

the combination of the Zeeman interaction and chemical shielding used to describe the

interaction of the nucleus with the field, but is given with different notation. The hy-

perfine coupling tensor A describes the interaction between the nucleus and unpaired

electrons. Note that both g andA have a non-zero isotropic part, and are not in general

symmetric [48]. For S > 1/2 we also observe the zero-field splitting (ZFS) interaction,

the spatial dependence of which is described by the symmetric and traceless tensorD.

The Hamiltonian in Eq. (1) therefore gives a description of the EPR spectrum with

the g-tensor giving the position of the resonance, and the ZFS and hyperfine interac-

tions splitting this resonance into multiple lines, known as the fine structure and hy-

perfine structure respectively. However the description of the NMR spectrum is more

complicated since the rate of electron relaxation is orders of magnitude greater than

nuclear relaxation, with typical values of the electron longitudinal relaxation time T1e

being in the range 10−12 s–10−8 s for the first-row transition metal ions, and 10−14 s–

10−12 s for the lanthanides (excluding Gd) [46]. The rapid electron relaxation results in

an averaging of the electronic magnetic moment, with the result that the splitting due

to the hyperfine interaction is averaged to a give a shift in the resonance. The effective

15



NMR Hamiltonian can therefore be written as

ĤNMR = −~γIB0 ·
(
1 − σorb − σp

)
· Î , (2)

where σp is the “paramagnetic” contribution to the chemical shielding. The first gen-

eral formalism to include all the terms in the EPR Hamiltonian in Eq. (1) was pub-

lished by Pennanen and Vaara [50] as an extension of an earlier effort by Moon and

Patchkovskii [51]. Pennanen and Vaara proposed the following form for σp:

σp = −
µB

~γIkT
g ·

〈
ŜŜ

〉
0
·A, (3)

where k is the Boltzmann constant. The ZFS tensor is hidden in the symmetric tensor〈
ŜŜ

〉
0
, which is a Boltzmann average of the dyadic product of the Cartesian compo-

nents of Ŝ evaluated using the electronic energy levels En(0, 0) at zero external field

and zero nuclear magnetic moment. It is given by:

〈
ŜŜ

〉
0

=

∑
n

〈
n|ŜŜ|n

〉
exp (−En(0, 0)/kT )∑

n exp (−En(0, 0)/kT )
. (4)

In the absence of the ZFS splitting interaction
〈
ŜŜ

〉
0

simplifies to

〈
ŜŜ

〉
0

=
1
3

S (S + 1). (5)

If we also assume that the g-tensor is simply given by the free-electron g-factor ge =

2.0023, the paramagnetic contribution to the chemical shielding is

σp = −
µBgeS (S + 1)

3~γIkT
A, (6)

which follows the Curie temperature dependence of 1/T .

In the absence of spin-orbit coupling effects, the hyperfine tensor can be written

as the sum of an isotropic Fermi-contact term Acon and a traceless, anisotropic, and
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symmetric dipolar coupling termAdip [48]:

A = Acon1 +Adip. (7)

Both Acon and Adip can be written in terms of the unpaired electron density [52]. For

electrons that are approximately localised at the metal ion, the dipolar coupling can be

parameterised in terms of the dipolar coupling constant bIS which is given by

bIS =
µ0~γIµBge

4πr3
IS

, (8)

where rIS is the distance between the nucleus and paramagnetic centre, and µ0 is the

permeability constant. The Fermi-contact term therefore provides a contribution to the

isotropic shift of the nucleus, referred to as the Fermi-contact shift, and the dipolar-

coupling term gives rise to an SA that is proportional to 2bIS . To give an idea of

the sizes of the shifts and SAs that one can encounter consider the example of a 31P

(γI = 10.841 × 107 rads−1T−1) interacting with the five unpaired 3d-electrons of a

Mn2+ ion (S = 5/2). A Fermi-contact interaction with AFC/h = 1 MHz at 298 K will,

according to Eq. (6), give an isotropic contribution to the shielding tensor of

σFC = −
9.274 × 10−24 × 2.0023 × 5

2 ×
7
2

3 × 10.841 × 107 × 1.38 × 10−23 × 298
× 2π × 106 = −7.63 × 10−4, (9)

which corresponds to a Fermi-contact shift of 763 ppm. The dipolar coupling constant

for a separation of 3 Å is 1.19 MHz, which gives a contribution ∆σ to the SA of

∆σ = −
9.274 × 10−24 × 2.0023 × 5

2 ×
7
2

3 × 10.841 × 107 × 1.38 × 10−23 × 298
× 2 × 2π × 1.19 × 106 = −1.8 × 10−3,

(10)

or −1800 ppm, which is responsible for a broad spinning sideband manifold. The range

of shifts and SAs can therefore be of the order of 100 kHz to 10 MHz, depending on

the material under study, and therefore such spins cannot be uniformly excited using

practicable RF powers. Therefore it is necessary for the NMR spectroscopist to have

an armoury of techniques available for the broadband excitation of such spin systems
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in order to investigate paramagnetic materials under MAS.

5.2. Magic-angle spinning

5.2.1. Single crystallite spectra

Under MAS [15, 38, 53], with a rotation frequency of ωr, the chemical shift Hamil-

tonian ĤCS(t) is the sum of two parts [37]:

ĤCS(t) = Ω0 Îz + ΩSA
c (γ; t)Îz. (11)

The isotropic frequency Ω0, which is observed in solution, is time independent and the

same for all crystallites, while the anisotropic frequency ΩSA
c (γ; t) is time dependent,

periodic over the rotor period τr = 2π/ωr, and is in general different for crystallites of

different orientations. For a given crystallite these frequencies are given by:

Ω0 = −ω0σ0, (12)

ΩSA
c (γ; t) =

+2∑
k=−2,k,0

ω(k)
c (γ) exp(−ikωrt), (13)

where ω0 is the Larmor frequency, σ0 is the isotropic nuclear shielding, and the coeffi-

cients ω(k)
c (γ) are given by

ω(k)
c (γ) = −

√
2
3
ω0

+2∑
l=−2

σ̃2l exp(−iαl)d(2)
lk (β)d(2)

k0 (θM) exp(−ikγ), (14)

where θM is the angle made by the rotor axis relative to the external magnetic field,

which is usually set to the magic angle tan−1(
√

2), d(l)
mn(θ) are the elements of the re-

duced Wigner rotation matrix of rank l, and the crystallite orientation is defined by the

orientation of the principal axis frame (PAF) of the nuclear shielding tensor relative to

the rotor. These orientations are parameterised by the three Euler angles α, β, and γ

which transform from the former frame to the latter. The symmetric anisotropic part

of the nuclear shielding tensor in the PAF is described by the five components of an
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irreducible spherical tensor of rank l = 2, σ̃2l, which are given by:

σ̃20 =

√
1
6

(3σ̃zz − σ0) =

√
3
2

∆σ, (15)

σ̃2±1 = 0, (16)

σ̃2±2 =
1
2

(σ̃xx − σ̃yy) = −
1
2
η∆σ, (17)

where the isotropic shielding σ0, shielding anisotropy ∆σ, and the asymmetry param-

eter η are given by:

σ0 =
1
3

(σ̃xx + σ̃yy + σ̃zz), (18)

∆σ = σ̃zz − σ0, (19)

η =
σ̃yy − σ̃xx

∆σ
. (20)

The σ̃ii are the three principal Cartesian components of the tensor in the PAF.

We note from Eq. (13), there are sets of crystallites sharing the same Euler angles

α and β, but which have different γ. The crystallites with a particular set occupy the

same orientations, but at different times, during the sample rotation, and are referred

to as carousels [54], and will be denoted by a subscript c throughout this paper. This

carousel symmetry imposes the following periodicity onto the coefficients ω(k)
c (γ):

ω(k)
c (γ) = ω(k)

c (0) exp(−ikγ). (21)

During a period of free precession between times t1 and t2, the spin system evolves

under the action of the Hamiltonian in Eq. (11). The isotropic and anisotropic contri-
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butions to the overall phase Φ0(t2, t1) and ΦSA
c (γ; t2, t1) are given by:

Φ0(t2, t1) =

∫ t2

t1
Ω0dt (22)

= Ω0(t2 − t1), (23)

ΦSA
c (γ; t2, t1) =

∫ t2

t1
ΩSA

c (γ; t)dt (24)

=

+2∑
k=−2,k,0

ω(k)
c (γ)
−ikωr

(
exp(−ikωrt2) − exp(−ikωrt1)

)
. (25)

The signal component observed in an NMR experiment is simply the complex exponen-

tial exp
(
i
(
Φ0(t2, t1) + ΦSA

c (γ; t2, t1)
))

. In the following we will focus on the anisotropic

component of this phase factor sc(γ; t) which is periodic over the rotor period, and can

be expanded as a Fourier series

sc(γ; t) = exp
(
iΦSA

c (γ; t, 0)
)

(26)

=

+∞∑
m=−∞

A(m)
c (γ) exp

(
iφ(m)

c (γ)
)

exp(imωrt), (27)

where the Fourier coefficients have amplitudes A(m)
c (γ) and phases φ(m)

c (γ), which are

given by

A(m)
c (γ) exp

(
iφ(m)

c (γ)
)

=
1
τr

∫ τr

0
dt exp

(
iΦSA

c (γ; t, 0)
)

exp(−imωrt). (28)

We note that the these Fourier coefficients are normalised as follows:

+∞∑
m=−∞

[
A(m)

c (γ)
]2

= 1. (29)

The factor
[
A(m)

c (γ)
]2

can be interpreted as the fraction of the spectral intensity from the

crystallite (α, β, γ) that is present in the sideband of order m [55]. Eq. (26) reveals the

origin of the sideband pattern, in which the spectral resonances are split into a series of

components which are separated in frequency by the MAS frequency. The label m is

referred to as the sideband order, and A(m)
c (γ) and φ(m)

c are referred to the intensity and
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phase of this sideband for a crystallite orientation (α, β, γ).

From Eq. (21) we immediately see that the anisotropic part of the chemical shift

frequency under MAS has the following symmetry:

ΩSA
c (γ; t) = ΩSA

c (0; t + γ/ωr). (30)

From here it is trivial to ascertain that the anisotropic contribution to the phase ΦSA
c (γ; t, 0)

can be written as

ΦSA
c (γ; t, 0) = ΦSA

c (0; t + γ/ωr, 0) − ΦSA
c (0; γ/ωr, 0). (31)

Expanding the phase factors of both sides of Eq. (31) as a Fourier series we obtain the

following equality:

+∞∑
m=−∞

A(m)
c (γ) exp

(
iφ(m)

c (γ)
)

exp(imωrt) (32)

=

+∞∑
m=−∞

A(m)
c (0) exp

(
iφ(m)

c (0)
)

exp(im(γ + ωrt)) exp
(
−iΦSA

c (0; γ/ωr, 0)
)
.

On comparing terms of equal sideband order m we obtain the following identities for

the sideband intensities and phases [54, 56, 57]:

A(m)
c (γ) = A(m)

c (0), (33)

φ(m)
c (γ) = φ(m)

c (0) − ΦSA
c (0; γ/ωr, 0) + mγ. (34)

We note that the sideband manifolds of crystallites in a particular carousel have the

same intensities, but different phases, and that for a single crystallite the sidebands do

not have the same phase. The three single-crystallite spectra in Fig. 4 illustrate this

point.

5.2.2. Powder averaging

In a powder all crystallite orientations are present, and the resulting spectrum is the

sum of the individual crystallite contributions. Conceptually this sum is computed from
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Figure 4: The difference between the NMR spectra of single crystallite, and a complete carousel. Three
single-crystallite spectra from the same carousel are shown with γ angles spaced by 120◦. Each spectrum
exhibits sidebands of different phases, but we note that the pattern of intensities is the same for each crystal-
lites. Averaging over γ gives the carousel spectrum in which all the sidebands have the same phase.
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the average over all orientations, but practically this is done in two steps. Following

Levitt [54] and Antzutkin et al. [58] we first average the spectra from the crystallites

over γ to give the sideband patterns of the individual carousels sc(t)

sc(t) =
1

2π

∫ 2π

0
dγ sc(γ; t), (35)

and secondly we average over all carousels to obtain the sideband pattern for the full

powder s(t)

s(t) =
1

4π

∫ 2π

0
dα

∫ π

0
dβ sin(β) sc(t). (36)

The first average over γ is performed by substituting the expressions for the side-

band intensities and phases in Eq. (34) into Eq. (26):

sc(γ; t) =

+∞∑
m=−∞

A(m)
c exp

(
iφ(m)

c (0)
)

exp(im(γ + ωrt)) exp
(
−iΦSA

c (0; γ/ωr, 0)
)
. (37)

Noting that we can expand exp
(
−iΦSA

c (0; γ/ωr, 0)
)

as a Fourier series:

exp
(
−iΦSA

c (0; γ/ωr, 0)
)

=

+∞∑
n=−∞

A(n)
c exp

[
−i

(
φ(n)

c (0) + nγ
)]
, (38)

Eq. (37) becomes

sc(γ; t) =
∑
m,n

A(m)
c A(n)

c exp
[
i
(
φ(m)

c (0) − φ(n)
c (0)

)]
exp

[
i(m − n)γ

]
exp (imωrt) . (39)

Finally, averaging over γ gives

sc(t) =
∑

m

[
A(m)

c

]2
exp (imωrt) , (40)

where we see that all the sidebands have the same phase, which is shown for the

carousel spectrum in Fig. 4, and that the intensity of the sideband of order m is given

by the square of the single-crystallite intensity [54, 56, 57].

The second average stage of the powder averaging now gives the following expres-
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sion:

s(t) =
∑

m

Im exp (imωrt) , (41)

in which the sideband intensities Im are given by the following integral

Im =
1

4π

∫ 2π

0
dα

∫ π

0
dβ sin(β)

[
A(m)

c

]2
. (42)

6. Radiofrequency pulse schemes

In this section we review the radio frequency (RF) pulse schemes that have been

applied to the broadband NMR of paramagnetic systems. The pulse schemes herein

introduced can all be generally described by the following RF Hamiltonian, which is

given in the reference frame that is rotating synchronously with the transmitter fre-

quency of the resonant component of the RF field [59]:

Ĥp(t) = ω1(t)R̂z

(
φp(t)

)
ÎxR̂z

(
φp(t)

)−1
(43)

= ω1(t)
[
cos

(
φp(t)

)
Îx + sin

(
φp(t)

)
Îy

]
, (44)

whereω1(t) and φp(t) are (in general time-dependent) amplitude and phase of the pulse.

The effect of the time dependence of the phase modulation becomes more transparent

if we transform the Hamiltonian Ĥp(t) into the so-called modulated frame, which is the

frame which precesses so that it follows the phase [60]:

ˆ̃
Hp(t) = −

dφp(t)
dt

Îz + R̂z

(
φp(t)

)−1
Ĥp(t)R̂z

(
φp(t)

)
(45)

= −ωrf(t)Îz + ω1(t)Îx. (46)

where a frequency offset ωrf(t) appears which is given by

ωrf(t) =
dφp(t)

dt
. (47)

The transmitter offset is therefore modified by adding to it an additional term which is

given by the time derivative of the phase.
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The two magnetic field components in Eq. 46 combine to give an effective RF field

of amplitude ωeff(t) given by:

ωeff(t)2 = ωrf(t)2 + ω1(t)2, (48)

which is tilted with respect to the z-axis by an angle θ(t), which is given by

tan(θ(t)) = −
ω1(t)
ωrf(t)

. (49)

6.1. Conventional constant-amplitude pulses applied to static systems

The conventional constant-amplitude pulse is the simplest form of RF irradiation

that is available to NMR. The RF field amplitude is, by definition, constant during the

pulse so that ω1(t) ≡ ω1. The phase varies as φp(t) = φ0 −Ωt which results in the pulse

having an effective transmitter offset that is different from the carrier by an amount −Ω.

The frequency Ω is usually referred to as the offset. In the absence of sample spinning

the Hamiltonian in the modulated frame is calculated from Eq. 46, and is given by

ˆ̃
Hp(t) = ΩÎz + ω1R̂z (φ0) ÎxR̂z (φ0)−1 , (50)

from which we immediately see that the magnitude and tilt angle of the effective field

are given by:

ω2
eff = Ω2 + ω2

1, (51)

tan(θ) =
ω1

Ω
. (52)

During the pulse the magnetisation precesses about the effective field. If the transmitter

is on resonance with the spin (Ω = 0) the precession occurs about the magnetic field

due to the pulse, and a flip angle β can be calibrated as β = ω1τp where τp is the pulse

length. The pulse can therefore be used for on-resonance excitation by setting β = π/2,

or on-resonance inversion or refocussing with β = π.

When the transmitter is placed off-resonance, so that Ω , 0, the precession about

the effective field results in a retarded performance for both the 90◦ and 180◦ pulses.
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It can be shown that 90% excitation for a 90◦ pulse is achieved only for spins whose

offsets lie in the range −1.58ω1 < Ω < +1.58ω1 [60]. The off-resonance inversion and

refocussing performance of 180◦ pulses is particularly poor, with the range of offsets

over which we obtain 90% efficiency being given by −0.23ω1 < Ω < +0.23ω1 [61].

These shortcomings make it necessary to use more sophisticated RF pulse schemes

with a better broadband response.

For spinning samples the theoretical treatment is considerably more complicated,

as we must take into account the time dependence of the offset. This is the subject of

Section 6.6.

6.2. Swept-frequency adiabatic inversion pulses

During a swept-frequency adiabatic pulse of duration τp the RF field amplitude

and phase are both modulated so that the effective field rotates from +z to −z. If the

rate of change of θ(t) is, at all times, negligible with respect to the size of ωeff(t), the

magnetisation vector of the spins remains locked to the effective field throughout the

pulse, and is thus also inverted [62]. In the last two decades a number of such pulse

schemes have been proposed for solution NMR and MRI [43, 63–67]. The profiles of

many of these pulses are symmetric to time reversal, and so that amplitude and phase

have the following properties:

ω1(t) = ω1(τp − t), (53)

φp(t) = φp(τp − t). (54)

The size of ω1(t) is generally increased from zero to its maximum value ωmax
1 halfway

through the pulse, and is then reduced symmetrically to zero during the second half of

the irradiation. This ensures that the effective field is parallel to ±z at the beginning

and end of the pulse. The symmetry of the phase results in variation of the transmitter

offset so that

ωrf(t) = −ωrf(τp − t). (55)

This produces a frequency sweep from −∆ω/2 to +∆ω/2, where ∆ω is the sweep

width. The expressions of the amplitude and phase modulation of some of the most
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pulse scheme ω1(t) φp(t) ωrf(t)
hyperbolic secant [63] ωmax

1 sech
(
β(2t/τp − 1)

)
− ∆ω

2β

[
ln

(
sech

(
β(2t/τp − 1)

))]
∆ω
2β tanh

(
β(2t/τp − 1)

)
tanh/tan [43]

ωmax
1 tanh

(
2ξ
τp

)
, 0 ≤ t ≤ τp/2

ωmax
1 tanh

(
2ξ

(
1 − t

τp

))
, τp/2 < t ≤ τp

−
∆ωτp

4κ tan κ ln
(
cos

(
κ(1 − 2t/τp)

))
− 1

2 ∆ω cotκ tan
(
κ(1 − 2t/τp)

)
WURST [66] ωmax

1

(
1 −

∣∣∣∣∣sin
(
π
(

t
τp
− 1

2

))∣∣∣∣∣n) ∆ω
2

(
t2
τp
− t +

τp
4

)
∆ω
2

(
2t
τp
− 1

)
Table 1: Amplitude ω1(t), phase φp(t), and frequency sweep ωrf(t) profiles for a selection of swept-frequency
adiabatic pulses. For each scheme the transmitter offset is swept through a range of frequencies ∆ω during
the pulse length of τp with a maximum RF field amplitude of ωmax

1 . For the hyperbolic secant pulse β is
a dimensionless parameter given by β = sech f , where f is the fraction of ωmax

1 at which the beginning
and end of the amplitude profile are truncated. Typically this truncation factor is set to 1%, and so β =

sech−10.01 = 5.2983. For the tanh/tan pulse ξ and κ are dimensionless parameters which take values ξ = 10
and κ = tan−1 20. For the WURST pulse n is a factor controlling the rate at which the amplitude profile is
smoothed from zero to ωmax

1 at the start and end of the pulse. Typically n = 20.

widely-used pulse schemes are given in Table 1.

We will now formalize the adiabatic condition for inversion starting from the Hamil-

tonian Ĥ(t) in the rotating frame, with reference axes (x, y, z), which is a sum of the

RF term Ĥp(t) and a term due to the (possible) time dependence of the chemical shift:

Ĥ(t) = Ω(t)Îz + Ĥp(t) (56)

= Ω(t)Îz + ω1(t)R̂z

(
φp(t)

)
ÎxR̂z

(
φp(t)

)−1
, (57)

where Ω(t) is the sum of the isotropic and anisotropic contributions to the shift. The

time evolution of the ω1(t) field in the rotating frame due to the pulse phase is shown

in Fig. 5(a), with plots of ω1(t) and ωrf(t) versus time in Fig. 5(f). After transforming

into the frequency-modulated frame, which has a new set of reference axes (x0, y0, z0),

the Hamiltonian becomes

Ĥ (0)(t) = [Ω(t) − ωrf(t)] Îz + ω1(t)Îx (58)

= ω(0)
eff

(t) R̂y

(
θ(0)(t)

)
ÎzR̂y

(
θ(0)(t)

)−1
, (59)

where the effective field ω(0)
eff

(t) and its angle of tilt from the z-axis θ(0)(t) are given by:

ω(0)
eff

(t)2 = [Ω(t) − ωrf(t)]2 + ω1(t)2, (60)

tan
(
θ(0)(t)

)
=

ω1(t)
Ω(t) − ωrf(t)

, (61)
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Figure 5: The various axis systems used to visualise swept-frequency adiabatic pulses. The standard rotating
frame (x, y, z) is shown in (a). An appropriate change of axis system transforms the magnetic field compo-
nents into the frequency-modulated frame (x0, y0, z0) in (b), in which we can define an effective magnetic
field ω(0)

eff
(t) and its angle of tilt θ(0)(t) from the z0-axis. A further transformation into the first adiabatic frame

(x1, y1, z1), shown in (c), can then be applied, in which the magnetic field components of the pulse can be
be expressed in terms of a new effective field and tilt angle from the z1-axis ω(1)

eff
(t) and θ(1)(t). This latter

transformation can then be repeated, and we can define a second and third adiabatic frame, (x2, y2, z2) and
(x3, y3, z3), which are illustrated in (d) and (e). In both frames the pulse can be described in terms of an
effective field and tilt angle. The RF field amplitude ω1(t) and the frequency sweep ωrf(t) are plotted in (f),
and the time variation of the tilt angle of the effective field in the frequency-modulated frame are shown in
(f) and (g). The tilt angles of the effective fields in each of the first, second, and third adiabatic frames, as
a percentage of the amplitude of the effective field, are plotted as a function of time in (h)–(j). The plots
in (f)–(j) were computed for a tanh/tan pulse [43] of 40 kHz RF field amplitude, 2 MHz sweep width, and
durations of 2 ms (dashed lines) and 100 µs (full lines). Adapted with permission from Ref. [68]. Copyright
2008 American Institute of Physics. 28



The orientation of the effective field relative to the axis system of the modulated frame

is shown in Fig. 5(b), and the variation of the tilt angle during the pulse is plotted in

Fig. 5(g).

A second transformation is now possible, in which the frame follows the path of

the effective field. This gives

Ĥ (1)(t) = R̂y

(
θ(0)(t)

)−1
Ĥ (0)(t)R̂y

(
θ(0)(t)

)
− θ̇(0)(t)Îy (62)

= ω(0)
eff

(t) Îz − θ̇
(0)(t)Îy. (63)

This frame is referred to as the adiabatic frame, the axis system (x1, y1, z1) of which is

shown in Fig. 5(c) [62]. The Hamiltonian in this frame is the sum of two terms, namely

a ‘large’ magnetic field along z, and a ‘smaller’ field along −y. We note that both

ω(0)
eff

(t) and θ̇(0)(t) are actually angular frequencies of precession due to magnetic fields

of magnitudes
∣∣∣ω(0)

eff
(t)/γI

∣∣∣ and
∣∣∣θ̇(0)(t)/γI

∣∣∣, and so we will continue to use the common

NMR convention of referring to the former as ‘fields’, in common with ω1(t). If the

rate of change of θ(0)(t) is negligible with respect to the effective field ω(0)
eff

(t), that is if

the so-called quality factor Q(1), given by

1
Q(1) = max

∣∣∣∣∣∣∣ θ̇(0)(t)

ω(0)
eff

(t)

∣∣∣∣∣∣∣ (64)

= max

∣∣∣∣∣∣∣∣
ω̇1(t) [Ω(t) − ωrf(t)] − ω1(t)

[
Ω̇(t) − ω̇rf(t)

]
ω(0)

eff
(t)3

∣∣∣∣∣∣∣∣ , (65)

is much greater than 1, then the term in Îy can be ignored, and the Hamiltonian becomes

Ĥ (1)(t) ≈ ω(0)
eff

(t) Îz. (66)

For a spin in a crystallite of a particular orientation in a static sample (so that Ω(t)

is time independent), the point at which the adiabatic condition is most likely to be

violated is usually when the carrier frequency is exactly resonant with the spin as this is

where the size of the effective field is at its lowest and where the tilt angle is changing

most quickly, both of which will lead to a loss of spin lock efficiency. In this case
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θ̇(0)(t) = ω̇rf(t)/ωmax
1 and ω(0)

eff
(t) = ωmax

1 , and so the quality factor is simply

1
Q(1) =

ω̇rf(t)(
ωmax

1

)2 . (67)

The adiabatic condition is then ω̇rf(t) �
(
ωmax

1

)2
, i.e. the rate at which we sweep the

carrier on resonance must be much lower than the square of the maximum RF field

amplitude. Hence the quality factor can be improved simply by raising the RF power,

or by sweeping the transmitter offset more slowly.

Under the action of the adiabatic Hamiltonian, the density operator in the adiabatic

frame can now be calculated as

ρ̂(1)(t) = exp
(
−i

∫ t

0
dt′ω(0)

eff
(t′)Îz

)
Îz exp

(
+i

∫ t

0
dt′ω(0)

eff
(t′)Îz

)
(68)

= Îz, (69)

in which we see that the magnetisation remains locked to the effective field. The trajec-

tory of the density operator in the rotating frame can now be recovered by transforming

back into this frame:

ρ̂(t) = R̂z

(
φp(t)

)
R̂y

(
θ(0)(t)

)
ρ̂(1)(t)R̂y

(
θ(0)(t)

)−1
R̂z

(
φp(t)

)−1
(70)

= sin
(
θ(0)(t)

) [
cos

(
φp(t)

)
Îx + sin

(
φp(t)

)
Îy

]
+ cos

(
θ(0)(t)

)
Îz. (71)

We see that as the tilt angle θ(0)(t) increases from 0 at t = 0 to π at t = τp, the z term

changes from +Îz to −Îz, and the z-magnetization is inverted.

The magnetization trajectories in the rotating frame, frequency-modulated frame,

and the adiabatic frame are shown in Fig. 6(a)–(c) for a WURST pulse applied to an

isotropic spin system.

6.3. Superadiabaticity

It has recently been shown that the adiabatic approximation cannot be rigorously

made for many commonly-used pulses with low Q(1) adiabaticity factors [68]. Never-

theless in these pulses the magnetization trajectories do proceed smoothly to an exact
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Figure 6: Magnetization trajectories resulting from the application of a WURST pulse to an isotropic spin
system. The trajectory in the rotating frame, shown in (a), shows complete inversion of the magnetization
vector from +z to −z. In addition the vector exhibits a precessional motion about the z-axis resulting in a
interchanging of the x- and y-components of the magnetization during the pulse. This precessional motion is
removed on transforming to the frequency-modulated frame. The resulting magnetization trajectory, shown
in (b), is close to the x0z0 plane, and shows a steady sweep of the vector from +z0 to −z0. The small deviation
of the path from the x0z0 plane is due to deviation of the pulse from perfect adiabatic behaviour. This effect
is also observed in the adiabatic frame (c) as a deviation of the magnetisation vector from the z1-axis; the
deviation is due to the presence of the perturbing field θ̇(0)(t) along −y1. The isotropic offset of the spin is 0.
The WURST pulse swept through a 24 kHz frequency range in 24 ms, at an RF field amplitude of 1 kHz.

inversion. The reason becomes apparent after a careful analysis of the spin-system

evolution during the pulse, which shows that magnetisation may be locked during the

pulse, not by the effective field in the modulated frame, but rather by the effective field

in the adiabatic frame itself. These pulses are dubbed superadiabatic [68]. If the θ̇(0)(t)

in Eq. (63) is not negligible we can, instead of applying the adiabatic approximation of

Eq. (66), rewrite the Hamiltonian as

Ĥ (1)(t) = ω(1)
eff

(t) R̂x

(
θ(1)(t)

)
ÎzR̂x

(
θ(1)(t)

)−1
, (72)

where

ω(1)
eff

(t)2 = ω(0)
eff

(t)2 + θ̇(0)(t)2, (73)

tan(θ(1)(t)) =
θ̇(0)(t)

ω(0)
eff

(t)
, (74)

where ω(1)
eff

(t) and θ(1)(t) are the effective field and its tilt angle in the adiabatic frame.

The Hamiltonian can then be diagonalised into a second time-dependent adiabatic ref-
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erence frame (x2, y2, z2) to give

Ĥ (2)(t) = ω(1)
eff

(t) Îz − θ̇
(1)(t)Îx. (75)

The tilt angle is plotted as a function of time in Fig. 5(h). We can then define a new

adiabatic quality factor Q(2) as

1
Q(2) = max

∣∣∣∣∣∣∣ θ̇(1)(t)

ω(1)
eff

(t)

∣∣∣∣∣∣∣ . (76)

The scheme can be iterated with the Hamiltonian in the kth adiabatic frame (xk, yk, zk)

given by

Ĥ (k)(t) = ω(k−1)
eff

(t) Îz + θ̇(k−1)(t)Îa, (77)

with the following effective field and tilt-angle parameters

ω(k)
eff

(t)2 = ω(k−1)
eff

(t)2 + θ̇(k−1)(t)2, (78)

tan(θ(k)(t)) =
θ̇(k−1)(t)

ω(k−1)
eff

(t)
, (79)

so that the magnetisation clings more closely to the evolving Hamiltonian. The posi-

tions of the effective field in the second and third adiabatic frames are shown in Fig.

5(d) and Fig. 5(e) respectively, and the variations of the tilt angles in these frames dur-

ing the pulse are shown in Fig. 5(i) and Fig. 5(j). In the kth adiabatic frame we can

define a quality factor Q(k) as

1
Q(k) = max

∣∣∣∣∣∣∣ θ̇(k−1)(t)

ω(k−1)
eff

(t)

∣∣∣∣∣∣∣ . (80)

The adiabatic condition can now be restated in terms of a superadiabatic quality factor

Qs which quantifies the minimal rate of change θ̇(n−1)(t) of the tilt angle of the effective

field from the z-axis in the nth adiabatic frame:

Qs ≡ Q(n) = max
(
Q(k)

)
= max

∣∣∣∣∣∣∣ θ̇(n−1)(t)

ω(n−1)
eff

(t)

∣∣∣∣∣∣∣ . (81)
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If the condition Qs � 1 is met, the Hamiltonian in the nth adiabatic frame can be

approximated as

Ĥ (n)(t) ≈ ω(n−1)
eff

(t) Îz, (82)

and therefore results in a perfect inversion.

6.4. Delays Alternating with Nutations for Tailored Excitation (DANTE) sequence

The DANTE sequence was designed originally to achieve selective excitation with

high-power pulses in the early days of solution Fourier transform NMR when it was

technologically challenging to switch between high- and low-power during the pulse

sequence [69, 70]. However it has recently found an application in broadband exci-

tation of both quadrupolar nuclei [25] and spin-1/2 nuclei in paramagnetic systems

[71]. The DANTE sequence comprises a series of units, each of length τc, comprising

a small flip-angle pulse of RF field amplitude ωmax
1 and length τp followed by a delay

τc − τp during which the RF field is zero. The RF field amplitude of a single unit is

described mathematically as:

ω1(t) =

 ωmax
1 , 0 ≤ t ≤ τp

0, τp < t ≤ τc.
(83)

A DANTE sequence is typically composed of N such units, and so has the following

periodicity:

ω1(t + nτc) = ω1(t), (84)

where n is an integer.

A typical DANTE excitation profile is shown in Fig. 7(a). Here the DANTE se-

quence is designed with a cycle frequency of ωc/2π = 60 kHz, and so is able to gen-

erate transverse magnetization from spins with isotropic shifts νiso that are separated

from the carrier frequency by multiples of 60 kHz. The magnetization trajectories are

shown for a selection of isotropic chemical shifts in Fig. 7(b). For a spin that is on res-

onance with the carrier νiso = 0 there is no chemical-shift evolution during the delays,

and so the small-flip-angle pulses simply add together to give an overall excitation with

a flip angle Nω1τp which can easily be tuned to 90◦. As the isotropic shift increases,
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Figure 7: The excitation profile and magnetization trajectories of a DANTE excitation pulse applied to
an isotropic spin system [69, 70]. The excitation profile, defined as the y-magnetization generated as a
function of isotropic offset, is plotted in (a), and exhibited a ‘comb’ structure in which sidebands of 100%
excitation are separated by the reciprocal of the DANTE cycle time, here 60 kHz. In (b) are shown the
magnetisation trajectories for different isotropic offsets: 0 (on resonance), 1, 5, 30, and 60 kHz. The DANTE
pulse comprises N = 10 units, each of cycle time τc = 16.67 µs and corresponding cycle frequency ωc/2π =

60 kHz. During each unit the pulse is applied for τp = 0.5 µs, at an RF field amplitude of 50 kHz, giving a
90◦ flip angle on resonance.

34



however, the chemical shift evolution during the delays interferes with the cumulative

precession of the magnetization about the RF magnetic field, meaning that a smaller

component of the final magnetization lies in the transverse plane, as can be seen in Fig.

7(b) for νiso = 1 and 5 kHz. When νiso = 30 kHz, so that the isotropic shift of the spin

lies exactly halfway between two pulses in the comb, there is zero net movement of

the magnetization vector. By contrast, when the isotropic shift is an integer multiple

of the cycle frequency (here 60n kHz), the spin system evolves under the shift during

each delay so that the magnetization rotates about the z-axis through an angle 2nπ and

returns to the position it occupied immediately after the previous pulse, as can be seen

for νiso = 60 kHz in Fig. 7(b). In these cases, the small-flip-angle pulses combine to

give a cumulative excitation effect as if the spin were on resonance with the carrier.

The RF field amplitude function in Eq. (83) can be expanded as a Fourier series

ω1(t) =

+∞∑
n=−∞

Cn exp (i(ζn + nωct)) , (85)

where ωc = 2π/τc and the complex coefficients Cn exp(iζn), containing an amplitude

Cn and phase ζn, can be calculated to be

Cn exp(iζn) =
1
τc

∫ τc

0
dtω1(t) exp(−inωct) (86)

=
ωmax

1

τc

∫ τp

0
dt exp(−inωct) (87)

=


iωmax

1
2nπ

(
exp(−inωcτp) − 1

)
, n , 0

ωmax
1 τp

τc
= ω1, n = 0,

(88)

where ω1 = ωmax
1 τp/τc is the average RF field amplitude over the whole DANTE

sequence. Explicit expressions for the amplitudes and phases can be calculated from

Eq. (88), giving:

Cn =


∣∣∣∣ωmax

1
nπ sin

(
1
2 nωcτp

)∣∣∣∣ , n , 0

ω1, n = 0
(89)

ζn = − 1
2 nωcτp, for all values of n. (90)

35



The DANTE sequence therefore comprises a comb of RF pulses applied at frequencies

nωc with amplitudes that decrease with increasing n according to a sinc function, and

phases that are linear in the effective carrier frequency nωc.

Of particular interest for broadband excitation are DANTE sequences with pulses

of very short duration, so that ωcτp � 1. Applying this condition to Eq. (88) and

expanding the complex exponential as a Taylor series, we obtain the following expres-

sions for the coefficient amplitudes and phases:

Cn ≈ ω1, for all values of n (91)

ζn ≈ 0, for all values of n, (92)

which represent a comb of RF pulses applied at frequencies nωc with the same ampli-

tude ω1 and phase. The application of such a sequence to a spin system with a large

spinning sideband manifold clearly presents the possibility of uniform excitation of the

spin system, as discussed further in Section 7.5.

Alternatively we can consider the case where the RF field is applied constantly

during the DANTE sequence, so that τp = τc. This example is clearly the same as a

single constant-amplitude pulse applied on resonance, as can be seen when we apply

this condition to Eq. (88) whence we obtain:

Cn =

 0, n , 0

ωmax
1 , n = 0

(93)

ζn = 0, for all values of n, (94)

remembering that ωcτc = 2π.

Finally the notion of the DANTE sequence being equivalent to a comb of pulses of

amplitudes Cn and phases ζn applied at frequencies nωc can be formalised as follows.

The time-dependent Hamiltonian Ĥp(t) representing the sequence of pulses is:

Ĥp(t) = ω1(t)Îx (95)

=

+∞∑
m=−∞

Cm exp (i(ζm + mωct)) Îx. (96)
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From Eq. (89) and Eq. (90) it is evident that the Fourier coefficient amplitudes and

phases have the symmetry C−n = Cn and ζ−n = −ζn (note that ζ0 is zero), and so the

infinite sum of complex exponentials can be replaced by a sum of cosines:

Ĥp(t) =

+∞∑
m=−∞

Cm cos (ζm + mωct) Îx. (97)

This expression can be rewritten as

Ĥp(t) =

+∞∑
m=−∞

Cm

[
cos (ζm + mωct) Îx + sin (ζm + mωct) Îy

]
, (98)

since the symmetry of the Fourier coefficients means that the sum of the sines is zero.

The entire sum can now be written as a sum of ‘sandwich’ operator expressions, which

gives

Ĥp(t) =

+∞∑
m=−∞

CmR̂z (ζm + mωct) ÎxR̂z (ζm + mωct)−1 . (99)

This expression describes a sum of pulses each with carrier frequency mωc, amplitude

Cm, and phase ζm, which explains the form of the excitation profile in Fig. 7(a). This

expression is therefore the one we will use when formally describing the application of

DANTE to spinning solids (see Section 7.5).

6.5. Broadband inversion and refocussing

We have described a number of pulses and pulse sequences that can be used for

broadband inversion of the z-magnetization of a spin system, and we will now turn our

attention to broadband refocussing which is more demanding to achieve. In this section

we will describe and prove how any element designed to achieve population inversion

also be used for the refocussing of the evolution of isotropic and anisotropic chemical

shifts under both static and MAS conditions.

Inversion corresponds to the density operator transformation Îz → −Îz, which is a

relative simple operation to achieve. When a pulse designed to achieve perfect inver-

sion is applied to refocussing of coherences, the transformation may be described as

Î+ → Î− exp(iφ) which corresponds to a change in coherence order of +1 to −1. In
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general, this change in coherence order is accompanied by accruement of a phase φ,

which is undesirable as the phase may be frequency dependent so that the spectrum is

unphasable or, for experiments under MAS conditions, orientation dependent so that

the sideband manifolds from different crystallites cancel, giving zero signal from the

entire powder. The design of a single broadband refocussing pulse therefore requires

the additional constraint that the acquired phase is zero.

Although this condition is generally not met for many classes of RF pulse schemes,

including adiabatic pulses, it is always possible to use a pulse designed for inversion to

achieve refocussing with uniform phase by employing the idea of excitation sculpting

[26]. In solution NMR or the solid-state NMR of static samples the principle is as fol-

lows. We first apply the refocussing element once, so that the coherence order changes

sign from +1 to −1 and vice versa. The resulting coherence also obtains a frequency-

dependent phase as discussed above. However this unwanted phase can be cancelled

by apply exactly the same refocussing element a second time so that it induces the

opposite change in coherence order to the first element. If the element S is part of a

spin-echo sequence τ–S -τ, the second element can be incorporated either at the begin-

ning of the echo to give S –τ–S –τ, or as an additional spin echo to give a double spin

echo experiment τ–S –τ–τ–S –τ. Even in cases where the pulse-sequence element does

not achieve perfect inversion or refocussing, a uniform phase can be achieved over an

excitation bandwidth by using appropriate coherence-order-selection methods, such as

pulsed-field gradients or phase cycling, independently to each of the elements.

The excitation sculpting principle has been described previously [26], but we will

restate it here, generalised to spinning systems, as it is a very important concept to

bear in mind when designing new experiments for broadband excitation. The time-

dependent Hamiltonian describing the pulse-sequence element S applied to a spin sys-

tem, which may be static or spinning is Ĥ(t). The corresponding propagator Û(t2, t1)

describing the effect on the density operator between times t1 and t2 has the general

form

Û(t2, t1) = T̂ exp
{
−i

∫ t2

t1
Ĥ(t)dt

}
, (100)

where T̂ is the Dyson time-ordering operator. The transformation induced by the se-
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quence as a whole can be described by an overall rotation operator paramaterized by

three angles. For example, if the sequence starts at time t0 and has duration τS, the

propagator can be written as the following double sandwich of rotation operators:

Û(τS + t0, t0) ≡ V̂S(ξS, θS, φS) = R̂z(φS)R̂y(θS)R̂z(ξS)R̂y(θS)−1R̂z(φS)−1, (101)

where ξS is the net angle of precession of the magnetization about the net effective

magnetic field, the orientation of which is given by a net tilt angle θS and phase φS.

Alternatively, the overall transformation of the density operator can be described by a

net rotation given by three Euler angles αS, βS, and γS:

Û(τS + t0, t0) ≡ ŴS(αS, βS, γS) = R̂z(αS)R̂y(βS)R̂z(γS). (102)

In the following we use this second description as it is convenient to describe the ro-

tations in terms of irreducible spherical tensors [72]. Before proceeding, we note that

the Euler angles are functions not only of the RF pulse sequence, but also of the pa-

rameters describing the chemical shift tensor under MAS, including the isotropic shift,

shift anisotropy, asymmetry, the Euler angles describing the orientation of the principal

axis frame (PAF) relative to the rotor frame, and the MAS frequency. The Euler angles

(αS, βS, γS) are therefore dependent on the crystallite orientation.

A propagator of the form given in Eq. (102) transforms an irreducible spherical

tensor T̂lm of rank l and order m according to the following relation:

ŴS(αS, βS, γS)T̂lmŴS(αS, βS, γS)−1 =

+l∑
m′=−l

T̂lm′D
(l)
m′m(αS, βS, γS) (103)

=

+l∑
m′=−l

T̂lm′ exp(−im′αS)d(l)
m′m(βS) exp(−imγS), (104)

where D(l)
m′m(α, β, γ) are the elements of the Wigner rotation matrices, and can be written

in terms of the reduced Wigner rotation matrix elements as

D(l)
m′m(α, β, γ) = exp(−im′α)d(l)

m′m(β) exp(−imγ). (105)
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We see that the rank of the tensor is invariant under the rotation, but the order is not.

Firstly we will calculate a general expression for the inversion of z-magnetization by

an arbitrary pulse-sequence unit. In the spherical tensor basis the density operator

representing magnetization along +z is proportional to T̂10 = Îz. The transformation of

this operator under the propagator in Eq. (102) is given by applying Eq. (104) to give

ŴS(αS, βS, γS)T̂10ŴS(αS, βS, γS)−1 = exp(+iαS)d(1)
−10(βS) T̂1−1 + d(1)

00 (βS) T̂10

+ exp(−iαS)d(1)
+10(βS) T̂1+1 (106)

= cos βS T̂10

+

√
1
2

sin βS

(
exp(+iαS)T̂1−1 − exp(−iαS)T̂1+1

)
.

The result is a mixture of terms representing z-magnetization (first term) and transverse

coherences (second and third terms). We can see immediately that the condition for

perfect inversion is for βS = π for all the crystallite orientations of all the chemical

sites of interest. If this condition is satisfied the density operator at the end of the

sequence is −T̂10 and the inversion is complete.

We now turn our attention to the refocussing of the chemical shift evolution. We

assume that at the start of the sequence the density operator contains terms only of

coherence order −1, which are proportional to the irreducible spherical tensor T̂1−1 =

Î−/
√

2. The pulse sequence element S transforms this operator as follows:

ŴS(αS, βS, γS)T̂1−1ŴS(αS, βS, γS)−1

= exp(+iαS)d(1)
−1−1(βS) exp(+iγS) T̂1−1 + d(1)

0−1(βS) exp(+iγS) T̂10

+ exp(−iαS)d(1)
+1−1(βS) exp(+iγS) T̂1+1 (107)

= exp(+i(αS + γS))
1
2

(1 + cos βS) T̂1−1 − exp(+iγS)

√
1
2

sin βS T̂10

+ exp (−i(αS − γS))
1
2

(1 − cos βS) T̂1+1. (108)

We see that if the element is designed to give perfect inversion, so that βS = π the only

term left in Eq. (108) is exp (−i(αS − γS)) T̂1+1, which represents pure coherence order
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of +1. Therefore if the sequence S gives perfect inversion, it will also give perfect con-

version of coherence order −1 to +1. In general, however, the conversion efficiency is

given by the factor 1
2 (1 − cos βS) which is orientation dependent. Even if this conver-

sion is not perfect, the term in T̂1+1 can still be selected unambiguously by appropriate

phase cycling. Therefore the density operator σ̂1 that is present immediately at the end

of the sequence is

σ̂1 = exp (−i(αS − γS)) d(1)
+1−1(βS) T̂1+1 (109)

= exp (−i(αS − γS))
1
2

(1 − cos βS) T̂1+1. (110)

We note that, whether or not the conversion to coherence order +1 is complete, the

term has also acquired a phase of −(αS − γS), which is orientation dependent, and so

the refocussing is not complete.

We now apply the pulse sequence element S a second time. The transformation

of σ̂1 by the propagator gives a new density operator σ̂2. Phase cycling this second

element to select the change in coherence order of −1 to +1 gives

σ̂2 = exp (−i(αS − γS)) d(1)
+1−1(βS) exp (+i(αS − γS)) d(1)

−1+1(βS) T̂1−1 (111)

=
1
4

(1 − cos βS)2 T̂1−1, (112)

in which the orientation-dependent phase factor has now been eliminated. The ampli-

tude of this term 1
4 (1 − cos βS)2 is simply the square of the refocussing efficiency of

the sequence, which reflects the fact that it has been applied twice.

This principle has been applied to isotropic systems and to static solids in areas of

NMR such as water suppression [26], selective one-dimensional nuclear Overhauser

effect (NOE) measurements [27], to adiabatic pulses in MRI [73], and to WURST-

CPMG experiments for ultra-wideline NMR [13].

Under MAS conditions, the same principle still holds with the additional constraint

that the two elements must be applied so that the rotor is in exactly the same position

at the start of the two elements. For example if we consider the double-spin-echo

sequence (nτr − τS/2)–S –(nτr − τS/2)–(nτr − τS/2)–S –(nτr − τS/2) where τS is the
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length of S , we see that the starting points of the two pulse-sequences S are separated

by 2nτr, which is independent of τS. Therefore the phase errors of the double echo

self-compensate when n is an integer or half-integer. This criterion shows that the

sequence S need not have a length equal to an integer number of rotor periods, thus

allowing the use of sequences that are shorter than a rotor period. In situations where

the coherence decay time T ′2 is not much longer than the rotor period, this property

allows such pulse sequences to be used without a prohibitive loss in sensitivity. The

excitation sculpting principle is also valid under faster MAS conditions, where τS is

an integer multiple m of the rotor period. For example we can choose n = m/2 + 1

to give the following “standard” double-spin-echo sequence: τr–S –τr–τr–S –τr, where

the starting points of the two sequences S are separated by m + 2 rotor periods [19].

However we can improve on this by setting n = (m + 1)/2 which gives the shorter

double-spin-echo sequence τr/2–S –τr/2–τr/2–S –τr/2, where the starting points of the

two sequences S are separated by m+1 rotor periods. This latter sequence is preferable

in situations where T ′2 is short compared to the rotor period. This sequence can be given

a little more versatility by shifting the position of the pulse sequence S of the first spin-

echo element so that it no longer falls in the centre of the original spin echo. The first

half echo is shortened by an arbitrary delay δ and the second half echo is lengthened

by the same amount. Of course according to the excitation sculpting principle we must

apply exactly the same change to the second spin echo to compensate for the possible

phase errors to give (τr/2 − δ)–S –(τr/2 + δ)–(τr/2 − δ)–S –(τr/2 + δ). The fact that

this sequence refocuses both the isotropic shift and SA can be verified by an explicit

calculation the same as that performed by Antzutkin et al. for the PASS experiment

[58].

The idea of excitation sculpting under MAS has been applied to SHAPs employed

in double adiabatic spin echo experiments [19] and adiabatic magic-angle turning ex-

periments [33], SHAP-CPMG experiments [74], and to trains of crystallite-selective

(XS) pulses designed to select a subset of crystallite orientations [75]. In particular

we note that, when applying the principle of excitation sculpting to adiabatic pulses in

double spin echo experiments, the second pulse must be identical to the first, and in

particular must sweep the carrier frequency in the same direction.
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6.6. Selective radiofrequency pulses applied to spinning solids: the jolting frame

Low-power frequency-selective excitation and inversion schemes have emerged re-

cently as a promising method of manipulating spins subject to large shift anisotropies

and quadrupolar interactions. In order to understand how these methods work it is

useful to describe them in the “jolting reference frame”, which was first introduced by

Caravatti et al [39]. Generally most NMR experiments are described in the standard

rotating frame, which is the frame of reference that rotates about the z-axis of the lab-

oratory frame at the RF carrier frequency ωrf. This is convenient because the resonant

component of the RF field ω1 is stationary, and the magnetisation appears to evolve

under a reduced magnetic field at an offset Ω0 + ΩSA
c (γ; t). In a solid-state experiment

under MAS the sample rotation modulates the anisotropic part of the offset ΩSA
c (γ; t),

which gives rise to a periodic oscillation of the motion of the magnetization about z, so

that the magnetization acquires a periodic phase ΦSA
c (γ; t2, t1) in addition to the phase

due to the isotropic shift Ω0(t2 − t1). The former oscillatory part results in a spectrum

containing a spinning sideband manifold, in which the sidebands are separated by ωr

as discussed in Section 5.2. This is shown in Fig. 8(a)–(c). In this reference frame

the periodic variation of the chemical shift during MAS means that a low-power pulse

is resonant with the spin for only a fraction of the time of the rotor period, and so the

magnetization nutates about the RF field only for this fraction of time. The pulse length

is therefore effectively scaled down. By contrast the jolting frame is a rotating frame

that follows the evolution of the magnetization during a period of free precession. In

this frame the apparent chemical shift is zero at all times, and the RF field acquires a

phase −Ω0(t2 − t1)−ΦSA
c (γ; t2, t1), and so appears to evolve at minus the chemical shift

that is measured in the rotating frame, as shown in Fig. 8(d). The representation of ω1

in the jolting frame Fig. 8(e) corresponds to a time reversal of the FID in Fig. 8(b), and

its Fourier transform in Fig. 8(f) gives a sideband pattern which is equivalent to that

in Fig. 8(c) following the reversal of the frequency axis. In this frame the transmitter

offset of the pulse undergoes a periodic variation during MAS, and so is resonant with

the spin system for only a fraction of the rotor period, leading to the same scaling down

of the effective pulse length as in the rotating frame.

This idea can be formalised by starting from the Hamiltonian which describes the
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Figure 8: Illustration of the transformation of the magnetic field and magnetisation vector under MAS into
the jolting reference frame. In (a) are shown the trajectories of both the ω1(t) field and the magnetization
vector of a single crystallite M in the rotating frame. Both reside in the xy-plane and accrue time-dependent
phases φp(t) and ΦSA

c (γ; t, 0) respectively. The time dependence of the magnetization vector under MAS
exp

(
iΦSA

c (γ; t, 0)
)

gives the FID shown in (b). The motion is periodic, and so the corresponding spectrum in
(c) exhibits sidebands separated by the spinning frequency. The jolting frame follows the evolution of M, and
so in this frame the magnetization is stationary along the x-axis, and theω1(t) field acquires a time-dependent
phase that is offset by −ΦSA

c (γ; t, 0), giving φp(t) − ΦSA
c (γ; t, 0), as shown in (d). The Fourier transformation

of (d) gives the sideband manifold in (e), which is the same as the spectrum in (c) with the frequency axis
reversed. Therefore the RF field splits into a series of components of amplitudes that phases that match the
complex conjugate of the sidebands in the spectrum. Adapted with permission from Ref. [24]. Copyright
2011 American Institute of Physics.

44



RF irradiation in the presence of a CSA under MAS. In the rotating frame this Hamil-

tonian is

Ĥ(t) = Ω0 Îz + ΩSA
c (γ; t)Îz + ω1(t)R̂z

(
φp(t) + ωtxt

)
ÎxR̂z

(
φp(t) + ωtxt

)−1
(113)

= Ω0 Îz + ΩSA
c (γ; t)Îz + ω1(t)

[
Îx cos

(
φp(t) + ωtxt

)
+ Îy sin

(
φp(t) + ωtxt

)]
,

where ωtx is the fixed carrier frequency of the RF pulse, and φp(t) is an additional

phase modulation of the irradiation. At this point we make no assumptions about the

form of this phase modulation, but we note that everything that follows is valid for any

amplitude and phase profile of the pulse. We now perform the transformation into the

jolting frame, as described previously [24]. Mathematically the jolting frame is simply

the interaction representation of the time-dependent chemical shift interaction. This

transformation may be written as

ˆ̃
H(t) = exp

[
+i

(
Ω0t + ΦSA

c (γ; t, 0)
)

Îz

]
Ĥ(t) exp

[
−i

(
Ω0t + ΦSA

c (γ; t, 0)
)

Îz

]
−

(
Ω0 + ΩSA

c (γ; t)
)

Îz. (114)

Writing the operator exponentials in terms of rotation operators we obtain:

ˆ̃
H(t) = R̂z

(
Ω0t + ΦSA

c (γ; t, 0)
)−1
ĤR̂z

(
Ω0t + ΦSA

c (γ; t, 0)
)
−ΩSA

c (γ; t)Îz −Ω0 Îz (115)

= ω1(t)R̂z

(
φp(t) + ωtxt −Ω0t − ΦSA

c (γ; t, 0)
)

ÎxR̂z

(
φp(t) + ωtxt −Ω0t − ΦSA

c (γ; t, 0)
)−1

= ω1(t)
[
Îx cos

(
φp(t) + ωtxt −Ω0t − ΦSA

c (γ; t, 0)
)

+ Îy sin
(
φp(t) + ωtxt −Ω0t − ΦSA

c (γ; t, 0)
)]
,

which shows that, in the jolting frame, the RF field evolves under minus the isotropic

chemical shift and CSA interactions. At first sight Eq. (115) appears to be complicated,

and one could question whether the use of the jolting frame gives us any additional

insight into the spin dynamics of low-power RF irradiation applied to spinning solids.

However a significant simplification is facilitated when we remember that the evolution

under the shift anisotropy gives rise to a sideband manifold. From Eq. (26) we have the
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following relation:

R̂z

(
ΦSA

c (γ; t, 0)
)

ÎxR̂z

(
ΦSA

c (γ; t, 0)
)−1

=

+∞∑
m=−∞

A(m)
c R̂z

(
φ(m)

c (γ) + mωrt
)

ÎxR̂z

(
φ(m)

c (γ) + mωrt
)−1

, (116)

which, when applied to Eq. (115), gives the result

ˆ̃
H(t) =ω1(t)R̂z

(
φp(t) + ωtxt −Ω0t

)
×

 +∞∑
m=−∞

A(m)
c R̂z

(
φ(m)

c (γ) + mωrt
)−1

ÎxR̂z

(
φ(m)

c (γ) + mωrt
) R̂z

(
φp(t) + ωtxt −Ω0t

)−1
,

(117)

for a single crystallite.

Eq. (117) is valid for any arbitrary pulse amplitude and phase profile, but can be

difficult to apply in most cases. Nevertheless it is extremely useful for describing the

effect of low-power irradiations such that ω1(t) � ωr at all times. We will now give

a concrete example, and investigate the effect of a low-power, constant-amplitude, and

constant phase (φp(t) ≡ 0) pulse, on a spin system with a large CSA. We start by

writing the carrier frequency as ωtx = Ω0 + nωr, where n is an integer. This means that

the transmitter is resonant with the n-order sideband in the spectrum. Eq. (117) then

becomes

ˆ̃
H(t) = ω1

+∞∑
m=−∞

A(m)
c R̂z(φ

(m)
c (γ) + (m − n)ωrt)−1 ÎxR̂z(φ

(m)
c (γ) + (m − n)ωrt). (118)

We can now apply average Hamiltonian theory and calculate the first-order average

Hamiltonian over one rotor period, which gives a valid description of the spin dynam-

ics provided that (1) the low-power approximation ω1 � ωr is observed, and (2) the

observation times of the density operator are restricted to integer multiples of the rotor
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period [76]. The first-order average Hamiltonian Ĥ is:

Ĥ =
1
τr

∫ τr

0
dt ˆ̃
H(t) (119)

= ω1A(n)
c R̂z(φ

(n)
c (γ))−1 ÎxR̂z(φ

(n)
c (γ)). (120)

Only one term in the sum is non-zero, which is the term representing the nth-order

sideband that is being irradiated. The result is simply a Hamiltonian describing an RF

pulse that is applied on resonance with RF field amplitude ω1A(n)
c and phase −φ(n)

c (γ).

For each crystallite the RF field amplitude is effectively scaled down by the intensity

of the irradiated sideband A(n)
c , which is a direct result of the pulse, as observed in

the rotating frame, being resonant only with the spin system for a fraction of each

rotor period, meaning that the magnetization nutates about the RF field only for the

same fraction of time. This fraction of time during which the pulse exerts its nutating

effect is strongly dependent on the crystallite orientation, with crystallites in which the

irradiated sideband has a larger intensity nutating more quickly. The non-uniformity of

this response is a complicating factor that must be addressed when designing broadband

pulses. However this same property is extremely useful if we wish to select a subset

of crystallite orientations from a powder sample [75], or to select individual sidebands

within a broad spinning sideband manifold [18] (see Section 7.2).

It is also possible to applying the jolting frame formalism to study the effects of

higher-power pulses for which the low-power approximation begins to break down. In

these cases the first-order average Hamiltonian no longer provides an accurate descrip-

tion of the spin dynamics, and it is necessary to calculate higher order terms. Alterna-

tively one can also calculate the series of terms in an effective Hamiltonian by Floquet

theory [77–80], which is necessary when the pulse waveform contains an inherent time

dependence, such as the phase profile of adiabatic pulses [81]. The details of the cal-

culation are complicated, and are reproduced in full elsewhere [24], and only a brief

summery is given here. The second- and third-order Hamiltonians Ĥ
(2)

and Ĥ
(3)

are
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each a sum of terms Γ(2) and Γ(3) which have the form:

Γ(2) =
ω2

1

ωr

{
A2

}
Îz (121)

Γ(3) =
ω3

1

ω2
r

{
A3

}
R̂z

(
φ(3)

)−1
ÎxR̂z

(
φ(3)

)
, (122)

where the notation {An} represents a product of n sideband intensities. We can see that

the second-order term is proportional to Îz, and so gives rise to a Bloch–Siegert shift

of the resonance frequency in the jolting frame [59]. By contrast the third-order term

is an operator that lies in the transverse plane, and so is an RF field which modifies the

first-order field in Eq. (120). The higher-order terms scale inversely with the spinning

frequency, either as ω−1
r or ω−2

r , and so become less important as we reduce the RF

field amplitude, eventually returning to the low-power approximation.

7. Pulse schemes applied to spinning paramagnetic solids

In this Section we review the methods that have been published for obtaining a

broadband NMR spectrum of nuclear species in a paramagnetic material. For each

method there will also be a brief discussion on whether the various pulse schemes

can be incorporated into more complex experiments designed to extract structural or

electronic information.

7.1. The spin echo

The most widely used pulse sequence in paramagnetic NMR is the spin echo, some-

times referred to as the Hahn echo after Erwin Hahn [31]. The basic sequence takes

the form

90◦ − τ − 180◦ − τ − acq., (123)

with EXORCYCLE applied to the 180◦ refocussing pulse so as to select a change in

coherence order of +1 to −1, so that coherences of these orders evolve during the first

and second delays τ respectively. This results directly in the most important property

of the spin echo, namely that the evolution of the isotropic chemical shift is refocussed

at the end of the second delay τ. For solid samples under MAS, it is vital that each
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half-echo τ be set to an integer number of rotor periods, usually one, so that the sample

rotation refocusses the evolution of the anisotropic interactions within each half echo.

This is particularly important for paramagnetic systems with large SAs, as any small

miscalibration in the delays can lead to significant errors due to net evolution of the

SA. Therefore if we begin acquisition immediately after this echo the resulting spec-

trum contains no frequency-dependent phase errors due to evolution of the chemical

shift or SA. Both errors would lead to peaks at different positions in the spectrum hav-

ing different phases. Phase errors due to the SA are particularly serious as they are

orientation dependent, and so the spectrum of the powder would exhibit cancellation

of intensity from the summation of the crystallites with no signal being seen at all in

extreme cases. An additional beneficial property of the spin echo is that signal losses

during the echo are not as serious as one would expect given the linewidths in the

spectrum. The one-dimensional linewidths are dominated by inhomogeneous broaden-

ing, which is due to a distribution of isotropic chemical shifts caused by different local

magnetic fields in different parts of the sample. This source of broadening is refocussed

by the spin echo, as it behaves as a chemical shift, and so the only sources of signal

decay during the echo are from homogeneous effects, such as relaxation and coherent

dephasing, which contribute to the time constant T ′2.

These frequency dependent phase errors are often seen in the one-pulse spectra as

a result of the receiver dead time δde, typically of a few µs, that is required between the

pulse and acquisition to switch over from transmit to detect mode. In the absence of

the dead time, assuming the pulse is of infinite power and zero duration, the beginning

of the free-induction decay (FID) is captured during the detection period as shown in

Fig. 9(a) for an SA under MAS. The Fourier transform then yields the spectrum in Fig.

9(c) in which the spinning sidebands have the same phase. However if we introduce

a dead time during which there is no acquisition, one or more of the data points will

be missing from the FID as shown in Fig. 9(b). This is particularly problematic if we

employ a large spectral width ∆ω, which is often needed to capture the full spectra

of paramagnetic species, as the sampling interval ∆t between data points in the time

domain is given by the Nyquist condition ∆t = 2π/∆ω [60], and more points are lost in

the dead time. For example if we have a spectral width of 1 MHz, the sampling interval
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Figure 9: Illustration of the effect of the receiver dead time δde on broad spectra. In (a) is shown the FID
acquired immediately following excitation. The Fourier transform yields the spectrum in (c) in which the
sidebands have uniform phase. If we now insert a delay between the pulse and detection period of a few µs,
as shown in (b), the resulting spectrum (d) cannot be phased.

is 1.0 µs, and so six points are cut from the beginning of the FID during a dead time

of 6.5 µs. The resulting Fourier transform in Fig. 9(d) then shows a large frequency

dependent phase error across the spectrum that cannot be removed using a first-order

phase correction. The advantage of the spin echo is that the dead time is absorbed into

the second half-echo delay τ and so we can acquire the first point of the FID as if δde

were zero.

The shortcomings of the one-pulse sequence are illustrated experimentally on the
7Li and 31P spectra of the cathode material LiFe0.5Mn0.5PO4 at 60 kHz MAS shown

in Fig. 10(a) and Fig. 10(c). Both spectra exhibit large frequency-dependent phase er-

rors, and the 31P spectrum also has a very low signal-to-noise ratio. In the spin echo

experiment the dead time is absorbed into the second half-echo delay, and so we see a

substantial improvement for 7Li as shown by the spectrum in Fig. 10(b) which can be

phased so that the sidebands have the same phase. In addition the sideband manifold

has been excited uniformly as will be discussed in more detail below and in subse-

quent sections. The spin-echo spectrum of 31P in Fig. 10(d) also shows improvement

in the form of a much higher signal-to-noise ratio better phase properties. However

the excitation window has been reduced by the inclusion of the 180◦ pulse which has

a comparatively narrow bandwidth compared to the 90◦ pulse as discussed in Section

6.1. Simulations of the excitation and inversion profiles of the excitation and refo-
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Figure 10: Experimental one-pulse and spin-echo spectra of the cathode material LiFe0.5Mn0.5PO4 at 11.74
T and 60 kHz MAS. The one-pulse (0.55 µs at 455 kHz RF field amplitude) 7Li spectrum with 8192 scans
is shown in (a), and exhibits poor phase. Using a spin-echo pulse sequence gives the spectrum in (b) with
uniform phase. The reduced excitation bandwidth of the spin echo presents no problems because the isotropic
chemical shifts of the different sites lie within a range of 60 kHz. The one-pulse (0.60 µs at 417 kHz RF
field amplitude) 31P spectrum with 32768 scans has very poor sensitivity and phase, as shown in (c). Use of
the spin echo gives some improvement in the phase across the spectrum, and a much better signal-to-noise
ratio, but at the expense of excitation bandwidth as the isotropic shifts cover a range of 800 kHz. The spectra
in (a)–(d) have been plotted against both chemical shift and frequency scales. For the latter the frequency is
calculated as ω0δrel, where δrel is the chemical shift measured relative to 0 ppm for 7Li and 6000 ppm for
31P. In (e) and (f) are shown simulations of the excitation profile of a 400 kHz 90◦ pulse, and the inversion
profile of a 400 kHz 180◦ pulse at 60 kHz MAS for a range of CSAs.
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cussing pulses of 400 kHz RF field amplitude are shown in Fig. 10(e) and Fig. 10(f)

respectively. In the absence of an SA the bandwidths are, respectively, 3.16ω1 and

0.46ω1. On including a progressively larger SA, from 100 kHz to 500 kHz, the excita-

tion and inversion profiles maintain the same shape with the most efficient response on

resonance with the isotropic shift, but with an overall reduction in the degree of excita-

tion and inversion. For example the excitation of a spin with a 100 kHz SA at 60 kHz

MAS with a 400 kHz pulse gives transverse magnetisation Mxy that is equal to close its

maximum value of the equilibrium magnetisation M0. Likewise inversion results in the

longitudinal magnetisation Mz close to to −M0, i.e. almost 100% inversion. However

on increasing the SA to 500 kHz the excitation and inversion efficiencies drop with Mxy

and Mz being equal to 0.8M0 and −0.5M0 respectively.

These simulations illustrate two properties that are observed on comparing con-

ventional excitation and inversion pulses under MAS conditions. Firstly the inversion

pulse is less tolerant of a large shift anisotropy than the 90◦ excitation pulse with the on-

resonance inversion efficiency of the former dropping off more rapidly with increasing

SA. Secondly we see that both pulses perform better in the presence of an increasing

SA, if the isotropic shift is resonant with the carrier, than in the presence of an increas-

ing isotropic offset of comparable magnitude. This intriguing effect arises because the

anisotropic component of the shift oscillations back and forth during MAS, passing

into and out from the pulse bandwidth. The pulse therefore exerts a procession effect

on the spin for a fraction of the time we see some excitation or inversion, which is

exactly the effect we quantified in the jolting frame in Section 6.6 [39].

The poor performance of the conventional inversion pulses means that they are

the weak link in the spin-echo sequence, and so must be replaced in order to have an

experiment that can deliver the broadband excitation properties that we require. Various

choices of refocussing pulse are discussed in the following sections, many of which

make use of the excitation sculpting principle in the form of a double spin echo. First

we will see how the conventional spin echo can be employed to acquired a broadband

spectrum by acquiring a number of spectra with different carrier frequencies, a method

that is referred to as frequency stepping.
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7.2. Frequency stepping

One comparatively simple solution to the problem of broadband excitation is to

record a series of spectra in which the carrier frequency is varied with a step size that

is smaller than the RF field amplitude. The individual sub-spectra are then summed

to give the whole spectrum. This is a method that has been extensively employed

both for the NMR of paramagnetic materials and quadrupolar nuclei, and has been

referred to a variety of names including “spin-echo mapping” [82–89], “variable offset

cumulative spectroscopy” (VOCS) [90–92], and “frequency stepping” [12, 13, 93, 94],

and is currently the most widely applicable solution to situations where the anisotropic

interaction is sufficiently large to broaden the spectrum so that it is wider than the

bandwidth of the probe. Frequency stepping is applicable to static samples, as there

is a straightforward relationship between the orientation of a particular crystallite and

the chemical shift it gives. There are far fewer examples of its application to spinning

samples however, probably because the sample rotation complicates the theoretical

treatment of the spin dynamics [38], and special care must be taken to ensure that the

final spectrum is an accurate representation of the “true” spectrum. Nevertheless it is

possible to apply frequency stepping successfully to spinning samples [17, 95].

The concept of frequency stepping under MAS conditions is illustrated in Fig. 11,

where the aim is to acquire the spinning sideband manifold in the reference spectrum

in Fig. 11(a) by recording a series of sub-spectra with the carrier frequency tuned to

different frequencies as indicated by the arrows. The arrows could either represent

single-sideband-selective excitation pulses that are applied to each sideband in turn,

or to higher-power selective pulses applied with a larger frequency step size. The sub

spectra in Fig. 11(b) are then summed to give a sum spectrum that should ideally be in

excellent agreement with the reference spectrum.

Recently a complete theoretical treatment of frequency stepping applied to spinning

solids has been published which is based on the jolting frame formalism presented in

Section 6.6 [18]. Frequency stepping by applying single-sideband-selective excitation

pulses, which satisfy the low-power condition ω1 � ωr, was first analysed as the

treatment is relatively straightforward The concept was then extended to higher-power

pulses, such that several sidebands lie within the excitation bandwidth of the pulse,
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Figure 11: Illustration of the concept of frequency stepping under MAS. The aim is to acquire a spectrum
exhibiting a broad spinning-sideband manifold, such as that in (a), in a series pieces for which the carrier
frequency is tuned to different spectral positions, which are indicated by the arrows. The arrows represent
either single-sideband-selective pulses, or higher-power selective pulses with bandwidths containing more
than one sideband. The sub-spectra are shown in (b).

which is the usual way of applying frequency stepping in practice. The formalism is

summarised below.

The concept of frequency stepping using low-power single-sideband-selective ex-

citation pulses is based on Eq. (120) in Section 6.6, which is repeated here for conve-

nience:

Ĥ = ω1A(n)
c R̂z(φ

(n)
c (γ))−1 ÎxR̂z(φ

(n)
c (γ)). (124)

This is simply a pulse of RF field amplitude ω1A(n)
c and phase −φ(n)

c (γ). The effect of

such a pulse of length τp on the equilibrium state of the spin system in a single crystal-

lite is given by applying the propagator of the Hamiltonian in Eq. (120) to the operator

Îz. The result is calculated from a series of well-known transformation relations [96],

giving

Îz cos
(
ω1τpA(n)

c

)
− Îy sin

(
ω1τpA(n)

c

)
cos

(
φ(n)

c (γ)
)
− Îx sin

(
ω1τpA(n)

c

)
sin

(
φ(n)

c (γ)
)
. (125)

The part that is observable under quadrature detection has coherence order −1, and

is represented by the operator Î−. From Eq. (125) the observable term, for a single
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crystallite, following irradiation with a single-sideband-selective pulse is therefore

− 1
2 i sin

(
ω1τpA(n)

c

)
exp

(
−iφ(n)

c (γ)
)

Î−, (126)

where we note that the coherence has acquired an orientation-dependent phase −φ(n)
c (γ).

This observable evolves during acquisition to give a sideband manifold:

sssb
c (γ; t) = sin

(
ω1τpA(n)

c

)
exp

(
−iφ(n)

c (γ)
)

exp
(
iΦSA

c (γ; t, 0)
)

(127)

= sin
(
ω1τpA(n)

c

) +∞∑
m=−∞

A(m)
c exp

[
i
(
φ(m)

c (γ) − φ(n)
c (γ)

)]
exp(imωrt),(128)

where we have ignored the factor of− 1
2 i and expanded the phase factor exp

(
iΦSA

c (γ; t, 0)
)

as a Fourier series following Eq. (26). The sideband intensities are the same as those

following non-selective excitation, and the sideband phases are offset by minus the

phase of the irradiated sideband. This means that the irradiated sideband is always ex-

cited with zero phase which has very important consequences for the spectrum arising

from the powder as we will now see.

Ultimately we are interested in whether the frequency stepping method is able to

faithfully reproduce the proper sideband intensities in the manifold of a powder sample.

This can be calculated in a straightforward manner by following the protocol outlined

in Section 5.2. We firstly substitute the expressions for the sideband intensities and

phases in Eq. (34) to obtain

sssb
c (γ; t) = sin

(
ω1τpA(n)

c

) +∞∑
m=−∞

A(m)
c exp

[
i
(
φ(m)

c (0) − φ(n)
c (0)

)]
exp

[
i(m − n)γ

]
exp(imωrt),

(129)

and average over γ to obtain the spectrum from the carousel, which is

sssb
c (t) = sin

(
ω1τpA(n)

c

)
A(n)

c exp(inωrt). (130)

We see that only the irradiated sideband is present, with intensity sin
(
ω1τpA(n)

c

)
A(n)

c and

phase zero. The factor of sin
(
ω1τpA(n)

c

)
in the intensity is simply due to the effective

flip angle of the pulse ω1τpA(n)
c which, as we have already pointed out, is scaled by
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A(n)
c . If the pulse is calibrated so that this flip angle is π/2, then the intensity of the

sideband is A(n)
c rather than

[
A(n)

c

]2
which we obtain following non-selective excitation.

As already intimated, this is a consequence of the irradiated sideband being excited

with the same phase for each crystallite, whereas all the other sidebands are excited

with different phases that cancel on summing over the whole carousel. Finally the

powder average is obtained by summing over all the carousels, giving

sssb(t) = Issb
n exp (inωrt) , (131)

where

Issb
n =

1
4π

∫ 2π

0
dα

∫ π

0
dβ sin(β) sin

(
ω1τpA(n)

c

)
A(n)

c . (132)

In order to obtain the entire sideband manifold, one simply tunes the RF carrier fre-

quency to each sideband in turn, acquires each single-sideband sub-spectrum following

single-sideband irradiation with a low-power pulse, and then sums the result to obtain

the “sum spectrum”. The question now remains as to whether the sideband manifold

in the sum spectrum is a faithful reproduction of what would be obtained in the “true

spectrum”. A simulated comparison is shown in Fig. 12 for nominal flip angles ω1τp

of 90◦, 50◦, and 10◦. The single-sideband sub spectra in Fig. 12(a) are summed to give

the sum spectra in Fig. 12(b). It can be seen that each sum spectrum shown matches

the reference spectrum, also shown in Fig. 12(b), to a very good approximation, which

can also be appreciated from the difference between the sum and reference spectra,

following a scaling of the former so that the global intensities match in Fig. 12(c). It

can be seen that there is better agreement when one uses a smaller flip angle, an obser-

vation that can be rationalised as follows. We have already seen that the intensity of

the nth-order sideband in carousel c is Cn =
[
A(n)

c

]2
, whereas in the sum spectrum it is

Cssb
n = sin

(
ω1τpA(n)

c

)
A(n)

c . The quality of the agreement between the two spectra de-

pends on how good a match Cssb
n is to Cn. If the combination of the sideband intensity

and nominal flip angle satisfies ω1τpA(n)
c � 1 the sine function can be approximated as
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Figure 12: Simulation of single-sideband-selective frequency stepping. Shown in (a) are the 32 sub-spectra
that were simulated using a single excitation pulse of length 125 µs for three nominal flip angles of 90◦, 50◦,
and 10◦. The nominal flip angle was varied by scaling the RF field, which took the values 2.00, 1.11, and
0.22 kHz, respectively. The spectra formed by summing the sub-spectra are shown in (b) with the reference
spectrum that was simulated with non-selective excitation. The differences between the reference and sum
spectra are illustrated in (c) which shows the difference spectra (sum spectrum–scaled reference spectrum)
for each case. Note that the vertical scale in these three plots is expanded by a factor of 8. The orientational
variation of excitation efficiency is shown by the sphere plots below each difference spectrum in (d). Each
point on the surface of the sphere corresponds to the orientation of a particular carousel with Euler angles
(α, β), and the axis labels (x, y, z) are the spatial Cartesian coordinates corresponding to these Euler angles,
and do not refer to the axis of the magnetization. The colour of each point on the surface gives the size
of the x-magnetization that is generated overall for each carousel of this orientation on summing the sub-
spectra (the y-magnetization is zero in all cases). The calculated expectation values of Îx were normalized
by dividing by the greatest value of the scaling factor Fc, the values of which are given below each sphere.
The normalized expectation values were then summed to give the total percentage excitation obtained with
each of the three flip angles. For comparison analytical value of the maximum scaling factor (θ in radians) is
also given. The shift tensor parameters are: isotropic shift 0 kHz, CSA +500 kHz, asymmetry parameter 0.3,
with an MAS frequency of 60 kHz. Reproduced with permission from Ref. [18]. Copyright 2013 American
Institute of Physics.

57



a Taylor series giving

Cssb
n ≈ ω1τp

[
A(n)

c

]2
(133)

= ω1τpCn. (134)

From this we would expect the pattern of relative sideband intensities to match those in

the reference spectrum if ω1τpA(n)
c � 1 is satisfied for all the sidebands in the manifold

for each carousel, hence the better agreement for a smaller nominal flip angle ω1τp.

One can also define a scaling factor Fc which is a measure of the size of the transverse

magnetisation represented by the sum spectrum as compared to a reference spectrum

requiring the same acquisition time as each sub spectrum. For a particular carousel this

scaling factor is given by

Fc =
∑

m

Cssb
m

/∑
m

Cm (135)

=
∑

m

Cssb
m , (136)

recalling that
∑

m Cm =
∑

m

[
A(m)

c

]2
= 1 as the Fourier coefficients are normalised. If

the small flip angle approximation is met the scaling factor becomes

Fc ≈ ω1τp

∑
m

Cm (137)

= ω1τp, (138)

which is simply the value of the nominal flip angle in radians. Fig. 12 shows the

comparison between the scaling factor calculated from the simulations and the value

expected from Eq. 138. The agreement for flip angles below 50◦ is excellent, and even

for a flip angle of 90◦ the error is less than 4%.

The extent of the agreement between the relative sideband intensities is related to

the uniformity of the size of the excited transverse magnetisation as a function of crys-

tallite orientation. Fig. 12(d) shows the size of the transverse magnetisation vector, that

is excited for each carousel as a function of the Euler angles (α, β). The plots have
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been normalised by dividing the size of the magnetisation by the scaling factor so that

the results lie between 0 and 1. It can be seen that the uniformity increases with de-

creasing flip angle, and that we have a small increase in the the degree of excitation

from 98.1% to 99.9% on reducing the flip angle from 90◦ to 10◦, which matches the

better agreement of the relative sideband intensities with the reference spectrum. Nev-

ertheless the overall signal-to-noise ratio decreases as we reduce the nominal flip angle

from 90◦ , and since we still see an impressive result for a 90◦ pulse, it is preferable to

use a large flip angle in order to maximize the sensitivity. This approach has been used

successfully on the battery material LiMnPO4 [18].

The use of single-sideband-excitation pulses for frequency stepping has a number

of disadvantages that render the method impractical. Firstly, one has to be able to ob-

tain near-baseline resolution of the individual sidebands in the spectrum so that only

a limited degree of inhomogeneous broadening can be tolerated. This condition may

not be met for many paramagnetic samples as effects such as anisotropic bulk mag-

netic susceptibility (ABMS) [97] and temperature gradients may lead to a large degree

of broadening. Secondly, for large SAs giving rise to a large number of sidebands,

stepping through the spectrum one sideband at a time will be time consuming and te-

dious. Thirdly, for samples containing more than one crystallographic site it may be

necessary to step through each spinning sideband manifold independently. Fortunately

these problems can be circumvented by using pulses with higher RF field amplitudes

which are no longer sideband selective. These so-called “selective pulses” (as opposed

to single-sideband selective) excite a portion of the spectrum containing a number of

spinning sidebands within the excitation profile of the pulse. The higher RF field am-

plitude allows one to increase the step size of the carrier frequency and obtain a sum

spectrum with fewer sub spectra. In this regime the intensities of the sidebands in each

sub-spectrum matches the sinc excitation profile of the pulse as shown by the simula-

tion in Fig. 13. The reference spectrum in Fig. 13(a) is compared with the spectrum

acquired using frequency stepping with an RF field amplitude of 200 kHz, and a step

size of the carrier frequency of 180 kHz corresponding to every third sideband. The

eleven sub-spectra are shown in Fig. 13(b), and were summed to give the sum-spectrum

in Fig. 13(c). The arrows in Fig. 13(c) show the positions of the carrier for each sub-
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Figure 13: Simulations illustrating the method of frequency stepping under ultra-fast MAS conditions. The
reference spectrum is shown in (a). Frequency stepping was performed using a spin-echo pulse sequence
of the form 90◦(y) − τ − 180◦(x) − τ, with EXORCYCLE applied to the second pulse, in which the RF
field of the pulses was 200 kHz, and τ was 48.75 µs (so that the sum of τ and half the 180◦ pulse length
was three rotor periods.) The eleven sub-spectra shown in (b) were simulated with the RF carrier frequency
being varied from −900 to +900 kHz in steps of 180 kHz (every three sidebands), and were summed to give
the sum-spectrum in (c). The intensity of the sum-spectrum is scaled by a factor of 1.45 due to the overlap
between the sub-spectra of the neighbouring steps. The arrows on the spectrum in (c) indicate the positions
of the carrier frequency for each experiment; those labelled (e)–(j) correspond to the experiments in which
part of the resonance was excited. The differences between the reference and sum spectra are illustrated in
(d) which shows the difference spectrum (sum spectrum–scaled reference spectrum). Note that the vertical
scale in this plot is expanded by a factor of 8. The degree of excitation as a function of (α, β) is shown
for each with a spherical intensity plot, which shows the x-magnetization generated for each orientation
(the y-magnetization was zero for all cases). Below is the plot indicating the total excitation for the sum of
all the spheres (e)–(j). The shift tensor parameters are: isotropic shift 0 kHz, CSA +500 kHz, asymmetry
parameter 0.3, and the MAS frequency was 60 kHz. Adapted with permission from Ref. [18]. Copyright
2013 American Institute of Physics.
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spectrum. The sum-spectrum shows a greater degree of deviation from the reference

spectrum compared to those acquired using single-sideband-selective excitation pulses,

as shown by the difference which is plotted in Fig. 13(d). Nevertheless the agreement

in the pattern of sideband intensities is still excellent.

One must take great care when summing the sub-spectra. If one attempts to phase

each individual sub-spectrum by applying a frequency-dependent phase correction the

resulting sum is a poor representation of the true sideband manifold. This is because

in order to sum the sinc-function envelopes properly there must be some cancellation

of the negative and positive intensities in the ‘wiggles’ flanking the lobe part of the

function. This effect can be obtained simply by applying a frequency-independent

phase correction to phase the part of the spectrum that is resonant with the carrier and

then summing.

The extent to which the different crystallite orientations were excited at each carrier

frequency is shown by the six sphere plots in (e)–(j), where each point on the sphere

represents the x-magnetization excited from each carousel with Euler angles (α, β).

The sum of these spheres shows that the sum spectrum represents an overall excitation

of 99.4% uniformity.

In summary, frequency stepping is a valuable technique for obtaining a one-dimensional

spectrum in cases where the range of shifts and SAs is too large to be excited with prac-

ticable RF field amplitudes, and especially when they are broader than the bandwidth

of the probe. The increased complexity of the frequency stepping method when applied

to spinning systems, including the correct way to sum the individual sub-spectra, has

resulted in a comparative paucity of applications in the literature. However it is not al-

ways straightforward to incorporate this method into more sophisticated experiments as

firstly we are not able to manipulate the entire spin system in a single experiment, and

secondly the time-consuming nature of the method means that its inclusion in two- and

three- dimensional pulse sequences would create an experiment that is prohibitively

long. Nevertheless there are several notable notable examples [17, 18, 36, 95] and it is

expected that, with the increasing interest in the NMR of paramagnetic systems, that

there will be more applications in the future.
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7.3. Broadband inversion and refocussing with Short, High-power Adiabatic Pulses

(SHAPs)

In order to use more sophisticated two- and three-dimensional experiments it is

necessary to have a pulse scheme that manipulates the entire spin system, which can

be incorporated into more complex experiments. In the last few years adiabatic pulses

have been employed both for broadband inversion and refocussing of spin systems sub-

ject to large paramagnetic interactions under MAS. In this section we shall look at the

class of pulses referred to as Short, High-Power Adiabatic Pulses (SHAPs) [19]. These

pulses are designed to achieve broadband inversion with a “brute force” approach in

which the carrier is swept through the entire spectrum in a relatively short time using a

high RF field amplitude to satisfy the adiabatic condition Q(1) � 1, where the quality

factor Q(1) is defined in Eq. (64).

There are two important criteria that need to be fulfilled for a successful SHAP:

(1) the carrier must sweep through a range of frequencies that is greater than the width

of the spectrum, (2) the RF field amplitude must be sufficiently large to ensure that

the pulse is adiabatic. If the above conditions are met we can shorten the pulse length

to reduce losses through relaxation and coherence dephasing, which is particularly

important when the system is subject to a large PRE. The reason behind criterion (1) is

that the large offsets are needed at the edges of the sweep to dominate the SA interaction

as this is where the RF field amplitude is lowest. This is usually achieved by choosing

a sweep width that is much greater than the width of the spectrum but still within the

probe bandwidth, for example in the range 1–10 MHz [19]. For all adiabatic pulses the

large increase in bandwidth compared to the RF field amplitude must be bought at the

price of a pulse length that is longer than conventional high-power pulses.

The RF field amplitudes that are needed to adiabatically invert a spin system ex-

hibiting a large SA are typically larger under MAS compared to static conditions. A

wide range of adiabatic pulse forms can be adapted to serve as successful SHAPs in-

cluding, but not limited to, those given in Table 1. The pulse that has so far been

used most extensively and successfully is the tanh/tan of Hwang et al. [43] which is

already used in MRI to invert over a large frequency range in a short time [62]. The

tanh/tan pulse is certainly more suited for fast broadband inversion and refocusing over
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a wide range of frequencies than either the WURST or hyperbolic secant pulses, as

we can appreciate when we note that a tanh/tan pulse requires a minimum peak RF

field amplitude of 70 kHz to achieve adiabatic inversion with a 5 MHz sweep in 50 µs

under static conditions, compared to 400 kHz for a WURST pulse. Nevertheless we do

not exclude other pulse waveforms as being possible candidates for SHAPs in future

applications.

The theoretical description of a swept-frequency adiabatic pulse applied to a spin

with a varying chemical shift has already been completely set down in Section 6.2

where, it must be remembered, we made no assumptions about the form of the time-

dependence of the chemical shift. In order to describe the effect of any adiabatic pulse

applied to a spinning solid we simply take all the equations in that section and replace

the time-dependent offset Ω(t) with the explicit expression for an SA subject to MAS

as given in Eq. (13). The offset Ω(t) is the sum of the isotropic and SA terms which,

when combined with the RF field, results in an effective field ω(0)
eff,c(γ; t) and tilt angle

θ̇(0)
c (γ; t) equal to

ω(0)
eff,c(γ; t) =

√(
Ωiso + ΩSA

c (γ; t) − ωrf

)2
+ ω1(t)2, (139)

θ̇(0)(t) =
ω̇1(t)

[
Ωiso + ΩSA

c (γ; t) − ωrf(t)
]
− ω1(t)

[
Ω̇SA

c (γ; t) − ω̇rf(t)
]

ω(0)
eff,c(γ; t)2

.(140)

In order to determine the inversion performance of the SHAP we must determine the

point during the pulse where the ratio
∣∣∣∣θ̇(0)

c (γ; t)/ω(0)
eff,c(γ; t)

∣∣∣∣ is largest, as this is where

the adiabatic condition is most likely to be violated, giving the value of 1/Q(1):

1
Q(1) = max

∣∣∣∣∣∣∣∣
ω̇1(t)

[
Ωiso + ΩSA

c (γ; t) − ωrf(t)
]
− ω1(t)

[
Ω̇SA

c (γ; t) − ω̇rf(t)
]

ω(0)
eff,c(γ; t)3

∣∣∣∣∣∣∣∣ . (141)

Compared to the static case described in Section 6.2, for a solid subject to large param-

agnetic interactions under MAS we must consider the effect of the time-dependent SA
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Ω(t), which is given by ΩSA
c (γ; t) in Eq. (13), and its derivative, which is given by

Ω̇SA
c (γ; t) = −iωr

+2∑
k=−2,k,0

kω(k)
c (γ) exp(−ikωrt). (142)

Both of these factors are extremely important when we determine whether or not the

pulse is adiabatic, as the modulation of the SA will cause both the magnitude and tilt

angle of the effective field to change rapidly which will have the effective of reducing

Q(1) and thus weaken the adiabaticity. In particular we would expect the rapid oscil-

lation of the SA to dominate the z-component of the effective field when the carrier

is on resonance with the isotropic shift. These effects can be seen in Fig. 14 which

show simulations of the magnetisation trajectories of a spin subject to a 200 kHz SA

during application of a SHAP at 60 kHz MAS for a single crystallite, the carousel, and

the whole powder. The single crystallite spectrum in shown in Fig. 14(a). During the

pulse the z-component of the magnetisation vector, shown in Fig. 14(b) exhibits the ex-

pected oscillations due to the modulation of the SA by MAS which are superimposed

upon the inversion. The resulting magnetisation pathway, shown in Fig. 14(c), is rather

complicated, and exhibits a number of crossings through the xy plane, five in this case,

rather than the single one that would be observed in the absence of the sample rotation.

When we perform the average over γ, giving the spectrum in Fig. 14(d), we see that the

oscillations in the magnetisation trajectory are cancelled, as shown in the plots in Fig.

14(e) and Fig. 14(f). This is because each crystallite in the carousel has the same time

variation of the chemical shift, but with different initial phases that depend on γ, which

follows directly from Eq. (21) and Eq. (30). The trajectories for the full powder are

also shown in Fig. 14(h) and Fig. 14(i). That the adiabaticity of the pulse is weakened

by MAS can be seen from the necessity of using an RF field amplitude of 400 kHz for

inversion rather than the 70 kHz required for the same pulse on a static system. This

is illustrated by Fig. 15 where the inversion trajectories of crystallites with different β

values, their respective carousels, and the whole powder is illustrated in for two SHAPs

with RF field amplitudes of 150 and 400 kHz respectively. The magnetization pathways

at 150 kHz RF field amplitude show, in many cases, imperfect inversion indicating a
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Figure 14: Simulation of the magnetization trajectory of a spin subject to a large shift anisotropy under
MAS during a SHAP [19]. Trajectories are shown for a single crystallite (a)–(c), the average over a whole
carousel (d)–(f), and the entire powder (g)–(i). The simulated spectrum of the single crystal at orientation
(α, β, γ) = (0◦, 50◦, 0◦) is shown in (a). The z-component of the magnetization during the SHAP in shown
in (b), exhibiting perturbations away from the usual smooth inversion pathway due to the modulation of the
CSA during MAS. In (c) is shown the entire trajectory in three-dimensional space. The spectrum of the
carousel (α, β) = (0◦, 50◦), representing the average over the angle γ is shown in (d). The corresponding
z-magnetization and magnetization trajectory are shown in (e) and (f) respectively. The oscillations that
were present in the single crystal plots (b) and (c) have now been averaged out, leaving the smooth inversion
pathways. Finally, the simulated spectrum of the powder is shown in (g), with the plots of the z-magnetization
and magnetization trajectory in (h) and (i). The shift tensor parameters are: isotropic shift 0 kHz, CSA +200
kHz, asymmetry parameter 0.3, and the MAS frequency was 60 kHz. The SHAP [19] was a tanh/tan pulse
[43] which swept through 5 MHz in 50 µs at an RF field amplitude of 400 kHz.
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breakdown of the adiabatic approximation. This results in a powder spectrum which is

incompletely inverted, and therefore a distorted spectrum. However, on increasing the

RF field amplitude to 400 kHz we observe 100% inversion for all crystallites.

Fast MAS also weakens the adiabaticity of the pulse, as can be seen from Fig. 16.

For each of five values of the SA, ranging from 100 to 500 kHz, is shown a contour

plot giving the extent of inversion following a tanh/tan SHAP as a function of RF field

amplitude and MAS frequency. These show that, for a given SA under a low MAS

frequency inversion can be achieved for a relatively low RF field amplitude that is close

to the value under static conditions. In addition for faster MAS, or larger SA, a greater

RF power is needed for adiabatic inversion. This is shown clearly in the cross sections

below the contour plots. The graph in Fig. 16(b) gives the RF field profile of the pulse

at 60 kHz MAS for the five values of the SA, and the plot in Fig. 16(c) shows that,

for a given RF field amplitude of 400 kHz the degree of inversion becomes lower at

higher MAS frequencies, and that the deterioration is greater as the SA increases. This

behaviour is expected if we consider Eq. (142) which indicates that the rate of change of

the SA frequency during MAS is proportional to the product of the spinning frequency

and anisotropy |ωrω0∆σ|, and so we would expect the weakening of the adiabaticity of

the pulse to be exacerbated for large SAs and faster MAS. For example, for a 200 kHz

CSA it can be seen that the RF field amplitude required to achieve adiabatic inversion

increases from 210 kHz at 20 kHz MAS to 550 kHz at 100 kHz MAS.

The magnetisation trajectories can be calculated accurately in the first adiabatic

frame from Eq. (71). This can be seen in Fig. 17 which shows a comparison of the

simulated and analytical variation of the x-, y-, and z-components of the magnetisation

during a SHAP at 20, 40, 60, 80, and 100 kHz MAS for a single crystallite containing

a spin subject to a 200 kHz SA. This proves that the inversion is adiabatic and can be

described in the first adiabatic frame for a sufficiently large RF field amplitude.

We give an experimental example of the application of SHAPs to the NMR of

paramagnetic materials from the field of energy storage. Fig. 18 shows confirmation

of the performance of a tanh/tan SHAP when applied to the battery cathode material

LiFe0.5Mn0.5PO4. The 7Li spectrum in Fig. 18(a) was acquired following a conven-

tional spin echo 90◦(x) − τr − 180◦(x) − τr − aqu. at 60 kHz MAS and an RF field
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Figure 16: Simulated contour plots showing the inversion performance of a SHAP applied to a spin subject
to a large CSA, as a function of RF field amplitude and MAS frequency. In (a) are shown five contour plots
for shift anisotropies of 100, 200, 300, 400, and 500 kHz. The contours coloured white indicate exactly
99% inversion, with the inversion performance in the regions at lower MAS frequency and greater RF field
amplitude (top left) being better than 99% efficient. The regions exhibiting 100% inversion are coloured
black. The vertical white dashed lines indicate where the cross sections in (b) were taken. The cross sections
show the dependence of the inversion on the RF field amplitude at 60 kHz MAS for all five values of the
shift anisotropy. The cross sections in (c) show the corresponding dependence of the inversion on the MAS
frequency at an RF field amplitude of 400 kHz, and are indicated on the contour plots in (a) by the horizontal
white dashed lines.
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Figure 17: Comparison of simulation and analytical calculation of the inversion trajectories due to a SHAP
for a particular crystallite under different MAS frequencies. The shift tensor parameters are: isotropic shift
0 kHz, CSA +200 kHz, asymmetry parameter 0.3, and the MAS frequency takes five values from 20 kHz to
100 kHz in steps of 20 kHz. The SHAP is a tanh/tan pulse which sweeps through 5 MHz in 50 µs at RF field
amplitudes of 210 kHz (20 kHz MAS), 310 kHz (40 kHz MAS), 400 kHz (60 kHz MAS), 500 kHz (80 kHz
MAS), and 550 kHz (100 kHz MAS). On the left are shown the simulated trajectories of the x- (dashed line),
y- (dotted line), and z-magnetization (full line) of a single crystallite with orientation (α, β, γ) = (0◦, 50◦, 0◦).
The corresponding trajectories calculated from Eq. (71) are shown on the right.
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Figure 18: Experimental verification of the inversion and refocussing performance of SHAPs applied to
paramagnetic materials. In (a) and (b) are shown the conventional 7Li and 31P spin-echo spectra of the
cathode material LiFe0.5Mn0.5PO4 at 11.74 T. The RF field amplitudes are 455 kHz for 7Li and 417 kHz for
31P. The 7Li and 31P double SHAP spin echo spectra are shown in (c) and (d), with the latter in particular
showing increased excitation bandwidth. The SHAP is a tanh/tan adiabatic pulse sweeping through 5 MHz in
50 µs at RF field amplitudes of 455 kHz for 7Li and 417 kHz for 31P. Panel (e) shows the integrated intensity
of the 7Li spectrum in (c) as a function of RF field amplitude following inversion by a SHAP under different
MAS frequencies. The four combinations of SHAP and MAS frequency are: 5 MHz sweep in 50 µs under
20 kHz MAS, 5 MHz sweep in 50 µs under 40 kHz MAS, 5 MHz sweep in 50 µs under 60 kHz MAS, and
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SHAP inversion at different RF field amplitudes is shown in panel (f), where the integral represents the sum
over all 32 sites over a range of 800 kHz. The SHAP is a tanh/tan adiabatic pulse sweeping through 5 MHz
in 50 µs.
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amplitude of 455 kHz. It is essentially the same as the spectrum acquired with a dou-

ble SHAP echo pulse sequence 90◦(x)−τr−SHAP−2τr−SHAP−τr−aqu. in Fig. 18(c)

with the same RF field amplitude. This is because, although there are multiple Li sites,

their isotropic shifts are coincident within the inhomogeneous broadening and, with the

carrier frequency placed on the centreband, the RF field amplitude of the conventional

pulses is sufficient to dominate this distribution. The RF field amplitude is also larger

than the SA, and so the excitation bandwidth is sufficient for the efficient excitation of

the entire spinning sideband manifolds. In addition the relatively long value of T ′2 of

1.59 ms for 7Li means that, despite the double SHAP echo pulse sequence being longer

than the standard spin echo, there are no additional losses in sensitivity. This is a con-

sequence of the fast spinning frequency of 60 kHz which allows refocusing of the SA

time modulation with a short rotor period of 16.67 µs. The experimental RF inversion

profiles of SHAPs with 5 and 10 MHz sweep ranges are compared at MAS frequencies

of 20, 40, and 60 kHz in Fig. 18(e). These profiles provide experimental confirmation

of the observation in the simulations of Figure 16 that faster MAS requires higher RF

field amplitudes to achieve inversion. Secondly Fig. 18(e) shows that a 10 MHz sweep

at 60 kHz MAS requires the same RF field amplitude as a 5 MHz sweep for inversion

despite the sweep rate being twice as large in the former. This has been confirmed by

simulation and is ascribed to the rate of change of the tilt angle of the effective field

being dominated by the time modulation of the SA and not to the rate at which the

carrier frequency is swept as is the case under static conditions.

The real power of the SHAP becomes apparent when we compare the standard spin-

echo and double SHAP spin-echo spectra of 31P in Fig. 18(b) and Fig. 18(d). Here there

are thirty-two distinct sites with isotropic shifts covering a range of 1 MHz [33] which

cannot be efficiently refocussed by the conventional 180◦ pulse used of 417 kHz RF

field amplitude. When we use the SHAPs for refocussing we see a much improved

excitation response. The apparent loss in sensitivity is due to the short T ′2 values of

between 100 and 300 µs leading to increased dephasing during the longer SHAP se-

quence. Nevertheless this can be tolerated in exchange for the broadband excitation

of the full spectral range with uniform phase. The bulk RF inversion profile in Fig.

18(f) shows that we obtain 90% inversion at 400 kHz. The incomplete inversion can
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be explained, once again, the short T ′2 leading to relaxation and coherence dephasing

during the pulse.

These SHAPs have proved to be very successful when applied to paramagnetic

materials as shown by the variety of systems to which they have been applied. For ex-

ample SHAPs have been used in spin-echo experiments for the 1H NMR of lanthanide-

containing organometallic complexes [32], the 1H and 13C NMR of paramagnetic chro-

mocene adducts [9], and the 7Li NMR of orthosilicate cathode materials Li2MSiO4 (M

= Fe, Mn) [34]. The pulses have also been incorporated into the CPMG experiment

[74]. Most recently they have been used in a more sophisticated adiabatic magic-

angle turning (aMAT) experiment used to separate the individual isotropic sites in the

spectrum. To date this experiment has been successfully applied for elucidating the

structural and electronic properties of the solid-solution cathode materials LiMPO4

(M = Fe, Mn) [33] and (M = Fe, Co) [36], and to the Na-battery cathode material

P2−Nax[LiyNizMn1−y−z]O2 (0 < x, y, z < 1) [35].

7.4. Broadband inversion and refocussing using frequency-selective irradiation by Single-

Sideband-Selective Adiabatic Pulses (S3APs)

Having reviewed the application of adiabatic pulses in the high-power regime,

we will now turn our attention to the possibility of applying adiabatic pulses in the

low-power regime where ω1 � ωr. As will be seen in this section these pulses

are frequency-selective to a single sideband, and so can be analysed in the jolting

frame presented in Section 6.6. This scheme has been applied by Wasylishen et al.

[20, 22, 23] and Grandinetti et al. [21] to the inversion of the satellites of half-integer

spin quadrupoles in order to enhance the signal corresponding to the central transition.

More recently these pulse schemes have been applied to paramagnetic species, and a

theoretical framework proposed to describe the mechanism of inversion. These pulses

were referred to as single-sideband-selective adiabatic pulses (S3APs) [24].

Before considering the theory in detail we shall first examine the magnetisation

trajectories of a spin system subject to a large CSA of 200 kHz at 60 kHz MAS as

shown in Fig. 19. The pulse in question is a 1ms WURST-20 [66] sweeping through

the +2-order sideband with an RF field amplitude of 50 kHz. When applied to a single
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Figure 19: Simulation of the magnetization trajectory of a spin subject to a large shift anisotropy under
MAS during an S3AP [24]. Trajectories are shown for a single crystallite (a)–(c), the average over a whole
carousel (d)–(f), and the entire powder (g)–(i). The simulated spectrum of the single crystal at orientation
(α, β, γ) = (0◦, 50◦, 0◦) is shown in (a). The z-component of the magnetization during the SHAP in shown
in (b), exhibiting large oscillations superimposed on the usual smooth inversion pathway because of the
modulation of the CSA during MAS. In (c) is shown the entire trajectory in three-dimensional space. The
magnetization vector oscillates during the pulse and so the trajectory crosses itself several times, resulting in
the crowded appearance of the plot in (c). The spectrum of the carousel (α, β) = (0◦, 50◦), representing the
average over the angle γ is shown in (d). The corresponding z-magnetization and magnetization trajectory
are shown in (e) and (f) respectively. The oscillations that were present in the single crystal plots (b) and (c)
have now been averaged out, leaving the smooth inversion pathways. Finally, the simulated spectrum of the
powder is shown in (g), with the plots of the z-magnetization and magnetization trajectory in (h) and (i). The
shift tensor parameters are: isotropic shift 0 kHz, CSA +200 kHz, asymmetry parameter 0.3, and the MAS
frequency was 60 kHz. The S3AP [24] is a WURST-20 [66] pulse applied to the +2-order sideband which
sweeps through 60 kHz in 1 ms at an RF field amplitude of 50 kHz.

73



crystallite, the spectrum of which is shown in Fig. 19(a), the magnetisation trajectory

in Fig. 19(c) exhibits a large number of violent oscillations due to the modulation of the

SA by MAS. These oscillations are most clearly seen in the plot of the z-magnetization

shown in Fig. 19(b). The resulting quality factor Q(1) is much less than unity, indicating

that the magnetisation is not spin-locked to the effective field, and so the pulse is not

adiabatic. However we will see in this section that both the effective field and the

magnetisation trajectory can be separated into a smooth inversion pathway, which is

adiabatic, upon which the rapid oscillations are superimposed. The fact that there is a

smooth adiabatic component to the inversion of the magnetisation is hinted at when we

examine the magnetisation trajectories of the carousel (Fig. 19(d)) and the full powder

(Fig. 19(g)). For both cases the plot of the z-magnetization during the pulse, shown

in Fig. 19(e) and Fig. 19(h) respectively, shows no oscillations indicating that they are

cancelled on averaging over γ, in the same way as for the trajectories during the SHAP

in Fig. 14. The full trajectories in Fig. 19(f) and Fig. 19(i) have a form that is similar

to those obtained when applying adiabatic pulses to isotropic spin systems, albeit with

reduced transverse components which can also be ascribed to the effect of γ averaging.

We will now address these observations with a theoretical treatment of the pulse in

the jolting frame. Following the transformation into the jolting frame, the Hamiltonian

describing a pulse applied to the nth-order sideband is given by Eq. (118). If we account

for both the amplitude profile ω1(t) and the phase profile φp(t) being time-dependent,

and having the properties in Eq. (53) and Eq. (54) as required for adiabatic pulses, the

jolting-frame Hamiltonian ˆ̃
H(t) is

ˆ̃
H(t) = ω1(t)R̂z

(
φp(t)

)  +∞∑
m=−∞

A(m)
c R̂z

(
φ(m)

c (γ) + (m − n)ωrt
)−1

ÎxR̂z

(
φ(m)

c (γ) + (m − n)ωrt
) R̂z

(
φp(t)

)−1
.

(143)

Once again we see that the Hamiltonian can be described as a superposition of RF

fields whose carrier frequencies are separated by the spinning frequency, and with rela-

tive amplitudes and phases given by the sideband amplitudes and phases. More specif-

ically the field that is applied with carrier frequency (m − n)ωr relative to the nth-order

sideband has an RF field amplitude ω1(t)A(m)
c and a phase that is offset from φp(t) by a
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constant −φ(m)
c (γ). The Hamiltonian can therefore be separated into a sum of terms with

m , n that exhibit oscillations at frequencies (m− n)ωr superimposed upon the smooth

phase variation of the sweep, and a single term with m = n that does not oscillate. It

is the former fields that give rise to the large oscillations in the single-crystallite mag-

netisation trajectory shown in Fig. 19(b) and Fig. 19(c), and the latter which gives the

smooth inversion that is superimposed. For a conventional constant-amplitude pulse

this last term is given by the first-order average Hamiltonian. However average Hamil-

tonian theory is not applicable in this case as the variation of phase and amplitude of

the adiabatic pulse are not negligible on the timescale of the rotor period [79] and and

we must use Floquet theory [80]. The first-order effective Floquet Hamiltonian Ĥ(t)

describes the smooth part of the inversion trajectory in the low-power regime, and is

given by the term with m = n:

Ĥ(t) = ω1(t)A(n)
c R̂z

(
φp(t) − φ(n)

c (γ)
)

ÎxR̂z

(
φp(t) − φ(n)

c (γ)
)−1

. (144)

This simply has the form of an adiabatic pulse applied on resonance with an RF field

amplitude scaled by A(n)
c and a constant phase −φ(n)

c (γ) that is added to the time-

dependent phase that gives the frequency sweep.

Now we are able to see that whether or not we achieve inversion of a given crystal-

lite depends on whether the pulse described by the Hamiltonian in Eq. (144) satisfies

an adiabatic condition of the form set out in Section 6.2. To derive the quality factor

we transform the Hamiltonian into the frequency-modulated frame, and then into the

first adiabatic frame, as described in Section 6.2, to give Ĥ
(1)

(t):

Ĥ
(1)

(t) = ω(0)
eff

(t) Îz − θ̇
(0)(t)Îy. (145)

As as have seen before the Hamiltonian is now a sum of a field along z1, and a field

along −y1 whose amplitudes are given by the size ω(0)
eff

(t) and the rate of change of the

tilt angle θ(0)(t) of the effective field in the frequency-modulated frame. Both quantities

are given by expressions that are analogous to those in Section 6.2 with the difference
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that the RF field amplitude is scaled down by the intensity of the irradiated sideband:

ω(0)
eff

(t)2 = ωrf(t)2 +
[
ω1(t)A(n)

c

]2
, (146)

tan
(
θ(0)(t)

)
= −

ω1(t)A(n)
c

ωrf(t)
. (147)

From these expressions the quality factor Q(1) in the first adiabatic frame is given by

1
Q(1) = max

∣∣∣∣∣∣∣ θ̇(0)(t)

ω(0)
eff

(t)

∣∣∣∣∣∣∣ (148)

= max

∣∣∣∣∣∣∣∣∣∣∣
ω1(t)ω̇rf(t) − ω̇1(t)ωrf(t)[
ωrf(t)2 +

(
ω1(t)A(n)

c

)2
]3/2

∣∣∣∣∣∣∣∣∣∣∣ A(n)
c . (149)

This condition is most likely to be violated, as in the isotropic case, when the transmit-

ter is on resonance in the jolting frame and the effective field is at its minimum, whilst

the tilt angle changes most rapidly. In this case the θ(0)(t) = ω̇rf(τp/2)/(A(n)
c ωmax

1 )

and ω(0)
eff

(t) = A(n)
c ωmax

1 . The adiabatic condition thus becomes simply ω̇rf(τp/2) �(
A(n)

c ωmax
1

)2
, which is the identical to the expression obtained in the isotropic/static

case, but with the RF field amplitude scaled down by the intensity of the irradiated

sideband A(n)
c .

As in the case of the SHAP the presence of the SA under MAS conditions weakens

the adiabaticity of the pulse compared to both static conditions and isotropic systems.

However whereas for the SHAP this weakening effect can be understood by the rapid

oscillation of the effective field due to the sample spinning, for the S3AP the explana-

tion is simply that the RF field is lower than the nominal value as it is scaled down by

the intensity of the irradiated sideband (remembering that the rapid oscillation effects

are effectively removed in the low-power regime). In the standard rotating reference

frame the scaling of the effective field is a consequence of the variation of the chemical

shift during MAS causing the spin to be on resonance with the pulse for only a fraction

of the pulse duration. The equally valid description in the jolting frame is that the RF

field amplitude is scaled down directly. When the quality factor is sufficiently large and

the adiabatic condition is satisfied, the Hamiltonian in Eq. (145) can be approximated
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by

Ĥ
(1)

(t) ≈ ω(0)
eff

(t) Îz, (150)

and adiabatic inversion is achieved for the crystallite in question.

The effective field, and hence the quality factor, depends on the intensity of the ir-

radiated sideband and so the inversion performance is strongly orientation dependent.

At this point it is worth emphasising that the sideband intensity depends only on the

Euler angles α and β, and not on γ which only affects the sideband phase. Therefore

each member of a particular carousel is inverted to the same extent and with the same

quality factor, but different carousels may experience different inversion performances.

These properties are illustrated by the simulations in Fig. 20. The chosen S3AP is a

WURST-20 pulse of 1 ms duration, which is applied to the centreband (n = 0) of the

sideband manifold which is a consequence of a 200 kHz SA at 60 kHz MAS. The z-

magnetization from the trajectories are shown for ten carousels with α = 0◦ and values

of β between 0◦ and 90◦ in steps of 10◦ at RF field amplitudes of 10 and 50 kHz. The

RF amplitude of 10 kHz is sufficient to invert an isotropic spin system, and is also able

to invert the crystallites with Euler angles β = 0◦, 10◦, 80◦, and 90◦ which have cen-

treband intensities greater than 0.71, corresponding to a scaled RF field of more than

7.1 kHz. However for smaller centrebands, including those with very low intensities

of 0.07 for β = 40◦ and 50◦, the scaled RF fields are too small to satisfy the adiabatic

condition and incomplete inversion is observed. Some low-intensity oscillations su-

perimposed upon the smooth parts of the trajectories are also seen, and are due to the

residual effects of the oscillating RF fields that we excluded in the first-order effective

Floquet Hamiltonian. These oscillations are of much lower intensity compared to those

in Fig. 19 as the RF field is lower and is within the low-power approximation. How-

ever, as before, these oscillations are cancelled on computation of the trajectory of the

whole carousel. Also shown for comparison are simulations of the trajectories on an

isotropic spin system for which the RF field of the pulse is scaled down directly by an

amount equal to the intensity of the irradiated sideband. The agreement between the

model and exact simulations is excellent, thus validating the theoretical description of

these S3APs in the low-power regime.
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Figure 20: Comparison of exact simulation of the inversion trajectories produced by a S3AP under MAS with
a simple isotropic model for different crystallite orientations. The shift tensor parameters are: isotropic shift 0
kHz, CSA +200 kHz, asymmetry parameter 0.3, and the MAS frequency is 60 kHz. The S3AP is a WURST-
20 pulse applied to the centreband which sweeps through 60 kHz in 1 ms at RF field amplitudes of 10 kHz
(left-hand column) and 50 kHz (right-hand column). Simulated results are shown for a range of ten values of
β from 0◦ to 90◦ in steps of 10◦; α = γ = 0◦. The inversion pathways are shown for the single crystallite (grey
full line) and the carousel (black full line), and are shown with the inversion pathways simulated assuming
an isotropic spin system in which the RF field amplitude is scaled down by the centreband intensity A(0)

c as
shown in Eq. (145) (black dashed line). The match between the exact simulated and model for the WURST
pulse at the RF field amplitude of 10 kHz (left-hand column) is excellent. However, only partial inversion
is seen for the powder resulting from the effective scaling down of the RF field as discussed in the text.
Raising the RF field amplitude to 50 kHz delivers 100% inversion, but the inversion trajectories for some of
the crystallites depart from those calculated in the low-power approximation.
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The inversion trajectory for the whole powder at 10 kHz RF field amplitude is also

shown in Fig. 20. The overall inversion performance is rather poor, but can be improved

by the simple expedient of raising the RF field amplitude in order to give a better spin-

locking performance for the crystallites. The single-crystallite and carousel magneti-

sation trajectories at a higher RF field amplitude of 50 kHz are shown in the right-hand

column. Firstly we notice that the oscillations in the trajectory have increased in am-

plitude, and that the results for the carousel are no longer in good agreement with the

model simulations. Both of these observations can be ascribed to the pulse no longer

being in the lower power regime as the RF field amplitude of 50 kHz is close in mag-

nitude to the spinning frequency of 60 kHz, and that the pulse is now also irradiating

the neighbouring sidebands. In particular we have to include higher-order terms in the

effective Floquet Hamiltonian expansion in order to determine the smooth part of the

magnetisation trajectory. For example we see that for β = 30◦ and 60◦ the inversion

is worse than expected with the low-power model, whereas for β = 40◦ and 50◦ we

actually see an improved performance. The form of the second- and third-order effec-

tive Hamiltonians Ĥ
(2)

and Ĥ
(3)

are given in Eq. (121) and Eq. (122). Each effective

Hamiltonian is a sum of terms Γ(2) and Γ(3) which have the form:

Γ(2) =
ω2

1

ωr

{
A2

}
Îz, (151)

Γ(3) =
ω3

1

ω2
r

{
A3

}
R̂z

(
φ(3)

)−1
ÎxR̂z

(
φ(3)

)
, (152)

where the notation {An} represents a product of n sideband intensities. Full forms

of these expressions for an axially-symmetric SA tensor are given in Ref. [24]. The

second-order effective Hamiltonian represents a magnetic field along z, and has the ef-

fect of shifting the isotropic shift in the jolting frame away from zero, playing the same

role as a Bloch–Siegert shift [59]. Whilst this term can, in principle, shift the isotropic

frequency outside the bandwidth of the S3AP, this has hitherto never been observed

and so it has been postulated that it merely changes the point at which the magneti-

sation vector crosses the xy plane and does not alter the inversion performance. The

third-order effective Hamiltonian is more important as it represents an RF field in the
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transverse plane that will combine with the field of the first-order effective Hamiltonian

to either reinforce or reduce it. If the first-order field is reinforced the overall inversion

performance will be better than expected from the low-power model, which is what

is observed for β = 40◦ and 50◦, but if the field is reduced we will see a worse than

expected performance, which is why the magnetisation vectors of the crystallites with

β = 30◦ and 60◦ are not inverted. The inversion properties for the individual crystallites

are complicated, but for the whole powder we see a much improved performance with

close to 100% inversion.

It is important to consider the effects that must be taken into account when optimis-

ing an S3AP on a powder sample, as the majority of solid-state NMR is performed on

such samples. We now consider how the interplay between the parameters of the pulse

shape, the RF amplitude, the MAS frequency, and the carrier frequency affect the in-

version performance. Following the above discussion on the orientational dependence

of the inversion on single crystallites, one could expect that elucidating the effect on

a full powder would be extremely complicated. Nevertheless the important considera-

tions are easy to deduce and can be summarised readily from the simulations shown in

Fig. 21. Fig. 21(a) shows contour plots of the value of the z-magnetization following

an S3AP as a function of both the carrier frequency relative to the isotropic shift, and

the RF field amplitude for five different MAS frequencies between 20 and 100 kHz in

steps of 20 kHz. The pulse is a WURST-20 of 1 ms duration with a sweep width that

is equal to the spinning frequency. For each spinning frequency the regions of best

inversion occur when the carrier frequency is placed such that one of the sidebands lies

within the bandwidth of the pulse, as expected from the analysis in the jolting frame.

In addition when the carrier is placed between two sidebands or outside the range of

the sideband manifold the inversion performance is poor, again as expected.

Cross sections from the contour plots showing the inversion and RF field profiles

are also shown. The inversion profiles as a function of the carrier frequency are shown

in Fig. 21(b), and were calculated at the lowest RF field amplitude which gives the

best performance. The profiles exhibit the “sideband” structure in which each lobe

has a bandwidth that is characteristic of the WURST-20 pulse that was used. We note

that for higher spinning frequencies, the greater separation of the sidebands allows us
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Figure 21: Simulated inversion performance of the S3APs under MAS. In (a) are shown contour plots of the
inversion of the powder sample as a function of RF field amplitude and transmitter offset at MAS frequencies
of 20, 40, 60, 80, and 100 kHz. In each case, the S3AP is a WURST-20 pulse of duration 1 ms with a sweep
width equal to the spinning frequency. The best inversion occurs when the transmitter is resonant with one
of the sidebands and the RF field amplitude is sufficiently high to satisfy the adiabatic condition in Eq. (149)
for all crystallites. In (b) are shown horizontal cross sections through the contour plots, taken at the positions
shown by the horizontal white dashed lines. The plots show the inversion as a function of transmitter offset.
The RF amplitude profiles in (c) are cross sections taken at the positions of the vertical white dashed lines
in the contour plots. The arrows in the plots in (b) and (c) indicate the transmitter offset and lowest RF
field amplitude at which the best inversion performance is obtained for each MAS frequency. Each pair of
optimum values is also indicated by the intersection of the two white dashed lines in each contour plot in (a).
The optimum values of (sideband order, RF field amplitude) for the five MAS frequencies are: (−2, 20 kHz)
at 20 kHz MAS, (+2, 30 kHz) at 40 kHz MAS, (+2, 50 kHz) at 60 kHz MAS, (0, 30 kHz) at 80 kHz MAS,
and (0, 20 kHz) at 100 kHz MAS. The shift tensor parameters are: isotropic shift 0 kHz, CSA +200 kHz,
asymmetry parameter 0.3.
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to use a WURST pulse with a greater sweep width, and therefore a greater bandwidth.

The carrier frequency that gave the best inversion is, for each MAS frequency, indicated

with an arrow. For the MAS frequencies up to and including 60 kHz, the optimal results

were obtained by irradiating one of the second-order sidebands (−2 for 20 kHz MAS,

and +2 for both 40 and 60 kHz MAS). There are clearly some orientations for which

a large fraction of the spectral intensity is located in the centreband, and which would

only be completely inverted by a pulse that is applied to the centreband, for example

crystallites with β = 0◦. However these represent a very low proportion of the total

number of crystallites in the powder, and the fact that they are only partially inverted

does not compromise the overall performance for the whole powder. For the higher

MAS frequencies, 80 kHz and 100 kHz, 100% inversion is obtained by irradiating the

centreband. This is because as we increase the spinning frequency, a greater amount

of the spectral intensity for each crystallite is located in the centreband at the expense

of the other sidebands, as can be seen by the centreband becoming the most intense

sideband in the simulated powder spectra in Fig. 21(a), and so the RF field amplitude

in the jolting frame is scaled down to a lesser extent and all orientations can be inverted.

The RF field profiles are shown in Fig. 21(c). Generally the total extent of inver-

sion increases from 0 kHz until we reach a threshold RF field amplitude above which

the adiabatic condition holds for most of the crystallites. For the low MAS frequency

of 20 kHz we note that there is a very narrow range of RF fields above the threshold

of approximately 20 kHz before we see the degree of inversion decrease with increas-

ing RF field amplitude. This degradation in performance at higher RF fields can be

ascribed mainly to the larger part played by the higher-order terms in the effective Flo-

quet Hamiltonian in the description of the spin dynamics now that we are no longer

in the low-power regime. As we saw above, the higher order effects can either aid or

retard the inversion for different crystallites, but overall they degrade the inversion of

the powder as a whole. At higher MAS frequencies there is a larger window in which

we obtain complete inversion, which is simply because the wider spacing of the side-

bands allows us to use larger RF field amplitudes before the higher-order terms exert

a significant effect. Increasing the MAS frequency allows us to use more intense RF

fields, but we can also see that they may not be needed as complete inversion at high
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spinning frequencies, such that the centreband is the most intense sideband in the man-

ifold, is often possible with lower RF fields than at lower spinning frequencies. This

is observed for 80 kHz and 100 kHz MAS in Fig. 21(c) where 30 kHz and 20 kHz RF

field amplitudes respectively are sufficient, compared to 20 kHz, 40 kHz, and 50 kHz

at 20 kHz MAS, 40 kHz MAS, and 60 kHz MAS respectively.

The simulations indicate that the S3APs present an attractive low-power alternative

to the SHAPs when applied to a system either with a single spinning-sideband mani-

fold, or with multiple sideband manifolds whose isotropic shifts satisfy the condition

− 1
2 ∆Ω ≤ Ωiso + nωr ≤ + 1

2 ∆Ω, (153)

i.e. that one of the sidebands of each manifold lies within the bandwidth ∆Ω of the

pulse. In addition to those already given above this is another reason why the pulses

are particularly efficacious at high MAS frequencies. The principle disadvantage of the

S3AP is the length required to achieve adiabatic inversion, which is usually of the order

of milliseconds, which can lead to significant signal losses for paramagnetic species be-

cause of the large relaxation rates. This is seen in the experimental RF field profiles of

two WURST-20 S3APs applied to the 7Li NMR of LiFe0.5Mn0.5PO4 at 60 kHz MAS, as

shown in Fig. 22. The isotropic shifts of the different 7Li sites, and therefore the centre-

bands of the sideband manifolds, are coincident, within the inhomogeneous broadening

[33], and so the spectrum can be manipulated using single-sideband-selective pulses.

Thirteen RF field profiles for each pulse were acquired in which the transmitter was

resonant with each of the sidebands from −6 to +6 in turn. In Fig. 21(a) are shown the

RF profiles obtained with a sweep of 60 kHz in 1 ms. The best inversion is obtained

by irradiating the −2-order sideband with an RF field amplitude of 35 kHz in which

the inverted intensity is 50% of the maximum. This is significantly less than expected

from simulation, and so we ascribe it to the losses incurred by relaxation and possible

coherent dephasing during the pulse, which is expected from the short relaxation times

of 1.88 ms and 1.59 ms for T1 and T ′2 respectively. This is confirmed in Fig. 21(b)

which shows the RF field profiles for a 60 kHz sweep of 0.5 ms duration in which we

see increased inversion for a number of the curves despite the faster sweep rendering
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Figure 22: Experimental illustration of the inversion performance of the S3APs applied to the 7Li spectrum
of the paramagnetic cathode material LiFe0.5Mn0.5PO4 at 11.74 T and 60 kHz MAS. In (a) are shown the
RF field amplitude profiles of a 1.0 ms WURST-20 pulse sweeping through a single sideband. The different
curves represent the integrated intensity of the 7Li spectrum following irradiation of each sideband. The best
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corresponding set of RF field amplitudes giving the inversion performance of a shorter 0.5 ms WURST-20
pulse.
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the pulse ‘less adiabatic’.

It is clear that shorter pulses will have to be developed for this scheme to become

widely used, even for systems exhibiting a single sideband manifold, or manifolds

with coincident sidebands. However it is clear from the theoretical treatment presented

above that these pulses are destined to become powerful alternatives to SHAPs for

experiments at MAS frequencies of 100 kHz and above. Moreover the jolting frame

formalism describing the effect of low power irradiation in the presence of a large CSA

under MAS is expected to be a useful tool in the development of this area.

7.5. DANTE

We now turn out attention to the application of the DANTE sequence to the NMR of

spinning paramagnetic powders. Unlike the adiabatic pulse schemes, in which the RF

field amplitude and phase are changed “slowly” according to the adiabatic condition,

in DANTE the RF field amplitude is changed “suddenly” as the transmitter is turned

on for a short time, and off for the remainder of the cycle time. Also in contrast to

adiabatic pulse schemes, DANTE can readily be applied to excitation and inversion of

spin systems. However it will also be seen that the approach is not generally applicable

to all possible systems with the NMR spectrum having to satisfy certain restraints:

namely that either only a single site is present or that, if multiple sites are present

the isotropic shifts are spread over a range that is either smaller than the spinning

frequency; and that the sidebands are not inhomogeneously broadened. The reasons for

these restrictions will be expanded upon below when the sequence has been analysed

in more detail.

The application of DANTE to broadband NMR was first proposed by Vitzthum

et al [25] for the excitation of a single 14N site that is broadened by the quadrupolar

coupling interaction. The transmitter was set to be resonant with the centrebands of the

two satellite transitions with the cycle time of the sequence ωc, as defined in Section

6.4, set to an integer multiple K of the spinning frequencyωc = Kωr so that K short flip-

angle pulses are applied per rotor period. The sequences with K > 1 have been referred

to as overtone DANTE sequences [25]. In effect this results in only the sidebands of

order nK being irradiated, where n is an integer. If the total number of short flip-angle
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pulses applied is N the sequence can be denoted as DN
K [98]. Following the application

to quadrupolar nuclei, the same scheme was then applied to the broadband excitation

of spin-1/2 nuclei in paramagnetic systems [71, 99].

To date there has been some work aimed at elucidating the precise mechanism by

which DANTE achieves broadband inversion and excitation [25, 71, 98, 100], but such

studies have been limited by failing to account for the full complexity of the theoretical

treatment needed when applying a selective pulse scheme to a spinning solid, and have

thus not been able to account for the effects encountered when using a sequence DN
K

with K > 1.

The Hamiltonian describing the DANTE sequence applied to an isotropic system

was derived in Section 6.4, and is given in Eq. (99). When applied to a spinning

solid with a large SA due to a paramagnetic interaction we must include an additional

term describing the MAS modulation of the shift. Then, following Section 6.6 we can

simplify the description by applying the jolting frame transformation as follows:

ˆ̃
H(t) =

+∞∑
m=−∞

+∞∑
n=−∞

A(m)
c CnR̂z

(
(ωtx −Ω0)t + ζn − φ

(m)
c (γ) + (nωc − mωr)t

)
Îx

× R̂z

(
(ωtx −Ω0)t + ζn − φ

(m)
c (γ) + (nωc − mωr)t

)−1
(154)

=

+∞∑
m=−∞

+∞∑
n=−∞

A(m)
c CnR̂z

(
ζn − φ

(m)
c (γ) + (nK − m)ωrt

)
Îx

× R̂z

(
ζn − φ

(m)
c (γ) + (nK − m)ωrt

)−1
. (155)

To go to the third line we have set ωc = Kωr, as discussed above, and set the transmitter

offset so that it is resonant with the isotropic shift, so that ωtx = Ω0. This expression

is reminiscent of that obtained for the S3AP with the added complexity of two summa-

tions rather than one, where the index m sums over the sidebands in the manifold, and

n sums over the components in the RF ‘comb’ of the DANTE sequence.

As with earlier applications of the jolting frame, the spin dynamics can, to a very

good approximation, be described by the first-order average Hamiltonian Ĥ , or equiv-

alently by the first term in the expansion of the effective Floquet Hamiltonian, provided

that |Cn| � ωr for all n. This condition is satisfied if ω1 = ωmax
1 τp/τc � ωr, and then
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the only terms in the double sum above that contribute are those with m = nK, which

are time independent:

Ĥ =

+∞∑
m=−∞

+∞∑
n=−∞

A(m)
c CnR̂z

(
ζn − φ

(m)
c (γ)

)
ÎxR̂z

(
ζn − φ

(m)
c (γ)

)−1
δm,nK (156)

=

+∞∑
n=−∞

A(nK)
c CnR̂z

(
ζn − φ

(nK)
c (γ)

)
ÎxR̂z

(
ζn − φ

(nK)
c (γ)

)−1
. (157)

It is worth considering the implications of the form of the average Hamiltonian before

analysing the effects in greater detail. We see that the only sidebands that contribute

are of order nK, which is a result of these being the only sidebands that experience

an irradiation from the DANTE sequence. That is, if K = 1 then all sidebands are

simultaneously irradiated by DANTE, whereas if K = 2 only the even-order sidebands

are irradiated. This has important implications on the spectrum that is obtained follow-

ing excitation by DANTE as a result of the effect on the γ-averaging. Fig. 23 shows

simulated spectra of a selection of single crystallite orientations belonging to the same

carousel following excitation by a conventional non-selective 90◦ pulse, and DANTE

sequences of 50 kHz RF field amplitude comprising K = 1, 2, 3, 4, and 8 pulses per

rotor period. The value of N is also increased so that the DANTE sequences have the

same duration of 10 rotor periods, i.e. N = 10K. For each scheme six single-crystallite

spectra are shown at 60 kHz MAS with γ-angles running from 0◦ to 300◦ in steps of

60◦, in addition to the spectrum obtained by averaging over the carousel.

For the non-selective 90◦ pulse the sideband manifolds of the individual crystallites

are excited with the same pattern of intensities, but different phases as expected from

the expressions in Eq. (34), and on summing we obtain sidebands with the same phase

[54]. The spectra obtained following excitation with D10
1 are identical to those obtained

with non-selective excitation, an observation that can be explained as follows. The

pulse lengths τp are sufficiently short to satisfy the condition τp � τc, which can be

easily verified by noting that τp = 5.0/N µs = 0.5/K µs and τc = 11.67/K µs, leading

to τp/τc = 0.04. Therefore the DANTE excitation pulse amplitudes Cn and phases ζn

are given by Eq. (92) as ω1 and 0 respectively. Eq. (157) takes on the simplified form
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Figure 23: Simulated effects of γ-averaging on the spectra excited by a DANTE sequence with multiple
pulses per rotor period. The spectra shown are of single crystallites that are members of the carousel (α, β) =

(0◦, 50◦) and with γ angles between 0◦ and 300◦ in steps of 60◦. Also shown are the spectra resulting from
the average over all values of γ for each excitation scheme. For each simulation the transmitter frequency
is resonant with the centreband. The carousel excited by the DANTE sequence with one pulse per rotor
period D10

1 matches exactly the conventional spectrum, in that all sidebands have the same phase and are
separated by the spinning frequency [54]. The use of a DANTE sequence with two pulses per rotor period
D20

2 interferes with the γ averaging so that the intensities of the odd-order sidebands cancel, resulting in a
carousel spectrum in which the sidebands are apparently separated by twice the spinning frequency. The
simulations of the sequences D30

3 and D40
4 illustrates the general result that the application of a sequence

DN
K to the spectrum of a powder sample spinning at ωr interferes with the γ averaging so that the resulting

spectrum contains only the sidebands of orders that are integer multiples of Kωr. The application of the
sequence D80

8 results in only the centreband being observed in the carousel spectrum. This is because the
±8-order sidebands, which are the closest sidebands to the centreband which would appear in the spectrum,
have negligible intensity and so are not observed. The shift tensor parameters are: isotropic shift 0 kHz, CSA
+200 kHz, asymmetry parameter 0.3, and the MAS frequency is 60 kHz. All DANTE sequences were of RF
field amplitude 50 kHz and duration 166.67 µs.
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for K = 1

Ĥ = ω1

+∞∑
n=−∞

A(n)
c R̂z

(
−φ(n)

c (γ)
)

ÎxR̂z

(
−φ(n)

c (γ)
)−1

, (158)

which is a sum of contributions to the overall RF field in the jolting frame from each

individual sideband. The sum is simply equal to Îx, which can be seen by considering

the following identity:

R̂z

(
ΦSA

c (γ; 0, 0)
)

ÎxR̂z

(
ΦSA

c (γ; 0, 0)
)−1

=

+∞∑
m=−∞

A(m)
c R̂z

(
φ(m)

c (γ)
)

ÎxR̂z

(
φ(m)

c (γ)
)−1

(159)

= Îx, (160)

and so we obtain

Ĥ(t) = ω1 Îx. (161)

This is simply an RF pulse of amplitude ω1 applied on resonance to an isotropic spin

system in the jolting frame which, when applied for a time Nτc such that ω1Nτc =

ωmax
1 Nτp = π/2, will give perfect excitation. In other words, a DANTE sequence of the

form DN
1 should be able to give uniform excitation of a sideband manifold provided we

are resonant with one of the sidebands.

In the short-flip-angle pulse limit τp � τc with more than one pulse per rotor period

(K > 1) the first-order average Hamiltonian in the jolting frame is

Ĥ = ω1

+∞∑
n=−∞

A(nK)
c R̂z

(
−φ(nK)

c (γ)
)

ÎxR̂z

(
−φ(nK)

c (γ)
)−1

. (162)

We see that only the sidebands of orders 0, ±K, ±2K, . . . contribute to the pulse as

expressed in the jolting frame. The direct result of this is that the sideband manifold

of the carousel that is observed in the rotating frame contains only those sidebands of

order separated from the centreband by an integer multiple of K. This is seen in Fig.

23 in the simulated spectra following excitation by the sequence D20
2 (with K = 2)

where only the sidebands with even order are seen in the spectrum of the carousel.

It is tempting to explain this observation as resulting from an increase in the effec-
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tive spinning frequency. However this is certainly not the case as the spectra of the

individual crystallites contain all the sidebands expected from an unchanged spinning

frequency, but with different phases compared to those excited conventionally, or by

D10
1 . The cancellation of the odd-order sidebands in the carousel is therefore simply

a consequence of the γ-averaging being perturbed by the different excitation scheme.

In addition when we increase the spinning frequency in reality, the spectral intensity

is distilled into fewer sidebands whose intensities therefore increase. This is not what

is observed here where the relative intensities of the surviving sidebands match those

of the conventional carousel spectrum. The same behaviour is observed with the exci-

tation sequences D30
3 and D40

4 , where the carousel spectra contain only sidebands with

orders that are integer multiples of 3 and 4 respectively. Once again, each individ-

ual crystallite is excited to give its full sideband manifold, and the cancellation in the

carousel is purely a consequence of γ-averaging. In all cases this behaviour means that

the spectrum of the full powder will also only contain sidebands of order nK.

When K is increased so that ωc is larger than the anisotropy, the only sideband

that contributes in the sum of Eq. (162) is the centreband, as the sidebands with orders

more positive than K, or more negative than −K, have zero intensity. The sum therefore

collapses to a single term to give

Ĥ(t) = ω1A(0)
c R̂z

(
−φ(0)

c (γ)
)

ÎxR̂z

(
−φ(0)

c (γ)
)−1

. (163)

This is exactly the same Hamiltonian that we obtained for single-sideband-selective

irradiation with a low-power constant-amplitude pulse in Eq. (124), where we have

substituted ω1 for ω1. Following such a DANTE excitation sequence we would expect

the spectrum of the carousel to contain only the irradiated sideband (here the centre-

band) due to the perturbation of the γ-averaging as calculated using Eq. (130). This is

seen in Fig. 23 for the sequence D80
8 where we see only the centreband in the carousel

spectrum as the +8- and −8-order sidebands have negligible intensity.

The form of the Hamiltonians derived above also has a direct effect on the effi-

ciency of the excitation. As shown in Eq. (161) a DANTE sequence with one pulse

per rotor period should give excitation with 100% efficiency for all crystallites in the
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powder simultaneously, provided that N, τp, and ωmax
1 are properly calibrated. This

is confirmed by the simulation of the RF field amplitude profile of D10
1 applied to the

full powder average of a spin system with a 200 kHz CSA at 60 kHz MAS in Fig. 24

(top panel) in which are shown the calculated profiles of the x-, y-, and z-magnetization

components. The variation of the three components with RF field amplitude has the

same form as that for a conventional pulse of phase x applied to an isotropic spin on

resonance with Mx = 0, My = − sin(ωmax
1 Nτp), and Mz = cos(ωmax

1 Nτp). This is the

result of the sum of the normalised complex sideband intensities for a given crystallite

being equal to unity, as shown by the identity in Eq. (159). However for K > 1 not all

the sidebands contribute to the sum in the expression of the Hamiltonian in Eq. (162),

and so the sum is no longer equal to unity. The sequence therefore no longer behaves

as an ideal pulse, and uniform excitation of the signal in all crystallites simultaneously

is no longer possible. This is also shown in Fig. 24 for DANTE sequences with K = 2,

3, 4, and 8, both for sequences with a constant number (10) of pulses (denoted D10
K ) of

length 166.67/K µs, and a constant length of 166.67 µs and an increasing number of

pulses (denoted D10K
K ). For none of these sequences is 100% excitation achieved for

the powder, and so these sequences cannot be used for uniform, broadband excitation.

The RF field profiles are also shown for two low-power constant-amplitude centreband-

selective pulses to illustrate their equivalence to the DANTE sequences with K = 8.

The pulse of length 20.83 µs is equivalent to D10
8 , for which the RF field amplitude

is effectively scaled down by a factor of 0.24 and hence is why the DANTE RF scale

of 0 to 200 kHz is equivalent to 0 to 48 kHz for the conventional pulse. The small

deviation in behaviour for the conventional pulse above 40 kHz is due to higher-order

effects in the average Hamiltonian that have hitherto not been accounted for, but which

become important when the RF field becomes comparable to the spinning frequency.

The longer pulse of 166.67 µs duration is equivalent to D80
8 , for which the effective RF

field amplitude scaling factor is 0.03; the ‘equivalent’ RF scale for the former pulse is

therefore 0 to 6 kHz. We note that, unlike the other pulse, there is no deviation in the

behaviour between the conventional pulse and the DANTE sequence as the lower RF

fields being considered mean that higher-order effects are still negligible.

We now turn our attention to the excitation and inversion profiles of the DANTE
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Figure 24: Radiofrequency field profiles of a selection of DANTE pulse sequences DN
K [25]. All profiles

show the x- (dotted line), y- (dashed line) and z-magnetization (full line) present after the sequence as a
function of RF field amplitude. The sequences whose profiles are shown in the left-hand column all have
10 DANTE pulse–delay units, and are of duration 10τr/K which decreases with the number of pulses per
rotor period K. The sequences whose profiles are shown in the right-hand column are all of equal duration
10τr = 166.67 µs. The RF field profiles of the DANTE sequences with K = 8 are exactly the same as those
due to a constant-amplitude pulse of the same duration (20.83 µs for D10

8 and 166.67 µs for D10
8 ) and an

RF field amplitude given by the scaled RF field amplitude of the DANTE sequence. The latter profiles are
shown at the bottom of each column. The shift tensor parameters are: isotropic shift 0 kHz, CSA +200 kHz,
asymmetry parameter 0.3, and the MAS frequency is 60 kHz.
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pulse-sequence elements as a function of the isotropic offset of the spin from the car-

rier. The examples considered here are the inversion profiles of DANTE sequences that

have been optimised as 180◦ pulses at different MAS frequencies, but the same con-

siderations also apply to the excitation and refocusing of coherences. These sequences

are compared, in Fig. 25, with a non-selective 180◦ and two SHAPs of different sweep

widths and the same RF field amplitude. The simulations of the inversion profiles were

made at MAS frequencies of (a) 20 kHz, (b) 40 kHz, (c) 60 kHz, (d) 80 kHz, and (e)

100 kHz. The SHAPs are the same as those analysed by simulations in Section 7.3,

namely tanh/tan pulses of 50 µs length, 5 MHz and 10 MHz sweep widths, and RF field

amplitudes equal to (a) 210 kHz, (b) 310 kHz, (c) 400 kHz, (d) 500 kHz, and (e) 550

kHz. The DANTE sequences were chosen to have the same duration as the SHAPs,

which therefore required an increase in N with MAS frequency; the exact sequences

used were therefore (a) D1
1 (which is equivalent to a non-selective pulse), (b) D2

1, (c)

D3
1, (d) D4

1, and (e) D5
1. The DANTE pulses, SHAPs, and non-selective pulses also

shared the same RF field amplitude for each MAS frequency.

So far the theoretical treatment in combination with the simulations has confirmed

that DANTE sequences with one pulse per rotor period can be used to give uniform

excitation or inversion of a spin which exhibits a broad spinning sideband manifold

comprising narrow sidebands provided we are on resonance with one of the sidebands.

When considering the experimental performance it is important to see how well the

sequence performs on systems that show effects that are commonly encountered in

paramagnetic systems, namely inhomogeneous broadening of the sidebands, multiple

sites giving overlapping spinning sideband manifolds with a large range of isotropic

shifts that, in general, will not be known a priori, and short relaxation times.

The DANTE inversion profile at 20 kHz MAS, shown in Fig. 25(a) is exactly the

same as the one obtained for the non-selective pulse. This is expected as the for-

mer comprises simply just one pulse (N = 1) with the same RF field and length at

the conventional pulse. Neither achieves 100% inversion, with the best performance

being 60% on resonance and dropping off rapidly with offset. The reason for the non-

complete inversion on resonance is the presence of the CSA which broadens the reso-

nance, and the MAS which constantly shifts the instantaneous chemical shift into and
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Figure 25: Simulated comparison of the isotropic shift inversion profiles of a conventional constant-
amplitude pulse, a DANTE sequence, and two SHAPs at different MAS frequencies. The DANTE sequence
is of the form DN

1 where N is the number of rotor periods giving the total duration of the sequence. The
two SHAPs have sweep widths of 5 and 10 MHz. For each spinning frequency, all four pulses have the
same maximum RF field amplitude, and the DANTE and SHAP sequences all have the same duration of
50 µs. In (a) are shown the inversion profiles at 20 kHz MAS and an RF field amplitude of 210 kHz. The
DANTE sequence D1

1 (N = 1) comprises a single pulse, and so the profile matches exactly that of the single
non-selective pulse of length 2.38 µs. The profiles at 40 kHz MAS and 310 RF field amplitude are shown in
(b). Here N = 2 for the DANTE sequence, and so the profile splits into a series ‘sidebands’ that are separated
by the spinning frequency. The profiles (c)–(d) were simulated for increasing MAS frequency and RF field
amplitude. The parameters are: (c) 60 kHz MAS at 400 kHz RF field amplitude (N = 3), (d) 80 kHz MAS
at 500 kHz RF field amplitude (N = 4), and (e) 100 kHz MAS at 550 kHz RF field amplitude (N = 5). The
shift tensor parameters are: isotropic shift 0 kHz, CSA +200 kHz, and asymmetry parameter 0.3.
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out of the pulse bandwidth. Both SHAPs perform much better, giving 100% inversion

over a bandwidth of approximately 1 MHz, with the pulse with the wider sweep width

having the larger bandwidth. At 40 kHz MAS the DANTE sequence comprises N = 2

pulses with the result that the inversion profile splits into a series of spikelets of high

inversion efficiency that are separated by the spinning frequency (40 kHz), as shown in

Fig. 25(b). The envelope of the spikelet inversion efficiency resembles a sinc function

that falls away with increasing offset. This envelope is now broader than the inversion

profile of the non-selective pulse, but it should be noted that, for the DANTE sequence,

there is no inversion when the isotropic shift falls between two spikelets. The two

SHAPs require a higher RF field amplitude to achieve inversion on resonance, and this

also results in the bandwidth of each being larger than at 20 kHz MAS. The same ef-

fects are noticed at the higher spinning frequencies of 60 to 100 kHz in Fig. 25(c)–(e).

The DANTE inversion profile exhibits spikelets that are separated by a larger interval

(equal to the spinning frequency) and their efficiency envelope becomes broader. At

100 kHz MAS it can be seen that the bandwidth of the envelope is larger than the band-

width of the SHAP with the 10 MHz sweep. However it should, once again, be noted

that for spins with isotropic chemical shifts placed between two spikelets, there is no

inversion.

The first experimental example presented here is the 7Li spectrum of the cathode

material LiFe0.5Mn0.5PO4. The small dispersion of the 7Li isotropic shift (approx-

imately 90 ppm) and the presence of inhomogeneous broadening of the lines (also

approximately 90 ppm), and ABMS effects [97], make it impossible to resolve the in-

dividual isotropic shifts. Fig. 26 shows a series of one-dimensional spectra that have

been acquired with various DANTE pulse sequences with varying K, at 60 kHz MAS

which is sufficient for the neighbouring sidebands to be resolved from each other, and

these can be compared with the reference spectrum acquired with a double-SHAP-echo

sequence in Fig. 18(c). The DANTE sequences were incorporated into a spin-echo

sequence of the form P1–τr–P2–τr–acq., where P1 is a sequence D10K
K optimised for

excitation, P2 is a sequence D20K
K which is double the length of P1, and is therefore

optimised for refocusing. All pulses have a peak RF field amplitude of 56.8 kHz, and

the carrier frequency was set so that the centre of gravity of the centreband was on
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Figure 26: Experimental 7Li spectra acquired from the cathode material LiFe0.5Mn0.5PO4 using DANTE
excitation sequences. For all spectra the pulse sequence was a spin-echo of the form P1–τr–P2–τr–acq.,
with the RF field amplitude of all pulses set to 56.8 kHz, and the MAS frequency 60 kHz giving a rotor
period τr of 16.67 µs. The transmitter offset was set to be resonant with the centreband. In (a) is shown the
conventional spin-echo spectrum, where P1 and P2 are conventional 90◦ and 180◦ pulses of lengths 4.4 and
8.8 µs. DANTE spin-echo spectra are shown in (b)–(f) where P1 is an excitation DANTE sequence DN

K of
total length 166.67 µs, comprising N small-flip-angle pulses of length 0.44/K µs, and P2 is a refocussing
DANTE sequence D2N

K of total length 333.33 µs, comprising 2N small-flip-angle pulses of length 0.44/K µs.
Spectrum (b) was acquired with the sequence D10

1 –τr–D20
1 –τr–acq., and shows sidebands separated by the

spinning frequency 60 kHz. Spectrum (c) was acquired using the sequence D20
2 –τr–D40

2 –τr–acq. comprising
the overtone DANTE sequences, and only shows the sidebands with even sideband order. Spectra (d) and
(e) were acquired with the sequences D30

3 –τr–D60
3 –τr–acq. and D40

4 –τr–D80
4 –τr–acq. and show sidebands

spaced every 180 and 240 kHz respectively. The DANTE pulses used in the excitation of spectrum (f) result
in observation of only the centreband, as the ±8-order sidebands are of negligible intensity, and the spectrum
is exactly the same the one that would be observed following excitation with single-sideband-selective 90◦

and 180◦ pulses of lengths 166.67 and 333.33 µs respectively, and RF field amplitude 1.5 kHz [18, 39]. Each
spectrum was acquired at 11.74 T, and with 8192 scans.
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resonance. Note that as K is increased the number of pulses in each sequence is in-

creased proportionately so that the compared sequences have the same overall length,

with P1 and P2 being of duration 166.67 µs and 333.33 µs respectively. The overall

spin-echo sequence was therefore 533.33 µs in length, which is less than one third of

T ′2 and losses due to relaxation and coherent dephasing were negligible.

The spectrum shown in Fig. 26(a) was acquired with a conventional spin-echo se-

quence with the same RF field amplitude to serve as a comparison. The excitation is

clearly not broadband when compared with the spectrum in Fig. 1(c), with the sideband

intensities following a sinc function. It is also evident that the lines are considerably

broadened by inhomogeneous effects, with the expected homogeneous broadening be-

ing an order of magnitude lower given the bulk T ′2 of 1.59 ms. The spectra in Fig. 26(b)

to Fig. 26(f) were recorded using the DANTE sequences with increasing K. The spec-

trum acquired following excitation with the echo sequence D10
1 –τr–D20

1 –τr is shown in

Fig. 26(b). Broadly speaking the pattern of sideband intensities matches that in the

reference spectrum in Fig. 1(c) indicating that the excitation is 100% efficient when the

pulse is resonant with the isotropic shift. Nevertheless we see considerable line nar-

rowing with only the central parts of each sideband being excited, and the width of the

sidebands being given by a combination of the homogeneous linewidth and the band-

width of each excitation lobe of the DANTE sequence. The inhomogeneous broadening

results is due to a spatial variation of the magnetic field throughout the sample, with

the result that the chemical shifts are also vary with position in the sample. Each site

is therefore only excited in the part of the sample where the isotropic shift is resonant

with the carrier frequency. The spectrum is therefore a superposition of responses from

all sites, and not a single site that has been extracted. The remaining spectra were ac-

quired following a DANTE spin echo where the number of pulses per rotor period was

(c) 2, (d) 3, (e) 4, and (f) 8. The form of the spectra follows that expected from the

simulations in Fig. 23 with the separation between neighbouring sidebands being equal

to 60 × K kHz. We also note that the relative intensities of the surviving sidebands

in each spectrum match the relative intensities in the spectrum in Fig. 23(b) where all

sidebands are observed. The spectrum in Fig. 23(f) contains only the centreband, and

so could also have been acquired using centreband-selective 90◦ and 180◦ of duration
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166.67 µs and 333.33 µs respectively, and an RF field amplitude of 1.5 kHz.

The second experimental example is the more challenging case of 31P NMR of the

same material. The isotropic shifts of the multiple 31P sites are distributed over a wide

range of 4500 ppm with considerable inhomogeneous broadening due to ABMS effects

(approximately 90 ppm) [97]. In addition the relaxation times are considerably shorter

than for 7Li, with the T1 relaxation times at 500 MHz field varying for the different

sites from 261 µs for the all-Mn site to 524 µs for the all-Fe site. The T ′2 values vary

from 132 µs (all-Mn) to 334 µs (all-Fe). The 31P spectrum has already been assigned

for this material using a combination of isotropic MAS NMR spectroscopy and density

functional theory (DFT) calculations. The sites can be partially resolved in an adia-

batic magic-angle turning (aMAT) experiment, which uses the SHAPs introduced in

Section 7.3 as refocusing pulses [33]. The spectrum acquired at 60 kHz MAS, which

is shown in Fig. 27(a), shows that the 32 31P are partially resolved into eight distinct

groups with the isotropic shifts given in the indirect dimension. The RF field ampli-

tude of all the pulses was 417 kHz. The one-dimensional spectra in Fig. 27(b)–(h) were

acquired following excitation with the same DANTE spin echo applied at different car-

rier frequencies as indicated by the arrows. The short T ′2 dephasing times required the

DANTE elements to be shortened considerably compared to those used for 7Li. The

DANTE sequences used for excitation and refocusing were therefore a D3
1 sequence of

50 µs length, and a D6
1 sequence of length 100 µs respectively, and used a maximum RF

field amplitude of 417 kHz. In all seven cases we obtain similar spectra with narrow

sidebands that are observed at frequencies separated from the carrier frequency by an

integer multiple of the spinning frequency of 60 kHz. As was the case for 7Li each

spectrum does not represent a single site, as each sideband manifold is considerably

broader than those observed in the aMAT spectrum. Therefore, in each case, we ob-

serve a superposition of multiple sites which are, in general, excited in different parts

of the sample due to magnetic field inhomogeneity.

In summary the DANTE sequence can deliver a broader excitation response over

a single sideband manifold when the carrier is resonant with one of the sidebands, but

there are a number of potential pitfalls that must be noted, especially when dealing

with systems that have a number of chemically distinct sites with unknown chemical
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Figure 27: Comparison of experimental 31P DANTE spectra (b)–(h) as a function off carrier frequency
and an adiabatic magic-angle turning (aMAT) spectrum [33] (a) acquired from the cathode material
LiFe0.5Mn0.5PO4. All spectra were acquired at 60 kHz MAS. The two-dimensional aMAT spectrum was
acquired using a non-selective 90◦ pulse, and six tanh/tan SHAPs that swept through 5 MHz in 50 µs. All
pulses were applied at 417 kHz RF field amplitude. 150 complex increments were acquired with 2656 scans
per increment. The one-dimensional DANTE spectra were acquired with a spin-echo sequence of the form
D3

1–τr–D6
1–τr–aqc., with the carrier placed at the positions in the spectrum indicated by the vertical arrows.

The excitation sequence D3
1 was of total duration 50 µs, and the refocussing element D6

1 of length 100 µs.
All DANTE pulses were applied with a maximum RF field amplitude of 417 kHz. Each DANTE spectrum
was acquired at 11.74 T, and with 32768 scans.
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shift parameters. Specifically the DANTE sequence in its present form cannot be relied

upon to deliver uniform excitation or inversion across the whole spectral range for all

sites as many may not be excited. In the presence of inhomogeneous broadening the

observed spectrum contains a superposition of sideband manifolds from different sites,

and so the sequence cannot be used to “pull out” sideband manifolds from different

sites, as can be appreciated readily from the example presented in Fig. 27.

In order to achieve a true, uniform excitation this sequence needs to be implemented

in combination with a frequency stepping scheme, similar to that described in Section

7.2, in which we acquire a number of spectra over a frequency range of the order of the

spinning frequency with a step size matching the bandwidth in each individual spikelet

of the excitation profile. However this will make it inconvenient to incorporate into

more complex multi-dimensional NMR experiments. Nevertheless with the advent of

probes capable of MAS frequencies of 100 kHz and above the DANTE scheme, as in

the case of the S3APs, may become an important alternative to SHAPs.

8. Concluding remarks and recommendations for practical broadband NMR

Following on from the detailed analysis of the RF pulse schemes presented above

we now provide a series of recommendations for obtaining the best possible NMR

excitation profile of paramagnetic species. We will examine how well the various se-

quences satisfy the three conditions for broadband NMR that were set out in Section 3,

which are repeated here:

1. For different nuclear sites, the pulse must excite, invert, or refocus over a suffi-

cient range of isotropic shifts;

2. For different nuclear sites, the pulse must excite, invert, or refocus over a suffi-

cient range of shift anisotropies;

3. For each individual site, the pulse must achieve 100% excitation, inversion, or

refocussing for all crystallite orientations.

The ease of incorporation of the various schemes into more sophisticated pulse se-

quences will also be evaluated. During this discussion there are two additional points
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that should also be borne in mind when conducting NMR experiments of solid param-

agnetic materials. Firstly an experiment based on the spin echo is required in order to

obtain uniform phase across the large spectral window often needed for the large range

of shifts and shift anisotropies, to suppress any signal from the probe background that

may pollute the spectrum, and to recover possible signal loss due to inhomogeneous

decay effects during the receiver dead time. We will therefore consider pulses for both

excitation and inversion/refocussing. Secondly Ishii et al. also recommended that one

uses a small-outer-diameter rotor and to spin at the maximum available MAS frequency

[16]. This not only reduces the number of spinning sidebands, thus increasing both res-

olution and sensitivity, but also reduces the length of the rotor period and therefore the

overall duration of the spin-echo sequences, SHAP, and DANTE elements. This is

particularly important when studying samples where the nuclear spins exhibit short co-

herence lifetimes T ′2. An additional advantage of using a small diameter rotor is that

the more favourable filling factor allows one to obtain larger RF field amplitudes using

conventional power levels.

Conventional constant-amplitude pulses satisfy all three criteria for both excitation

and inversion/refocussing if the RF field amplitude is sufficiently high that is dominates

the range of shifts and shift anisotropies. This may be the case for 90◦ excitation

pulses which have a bandwidth of isotropic shifts of 3.16ω1 within which we obtain

90% excitation efficiency. For instance if we use an RF field amplitude of 400 kHz,

which can be obtained for 31P on a Bruker 1.3 mm probe, the isotropic shift bandwidth

is 1264 kHz. On the other hand the conventional 180◦ pulses used for inversion and

refocussing have a somewhat smaller bandwidth of 0.46ω1 which, for a 400 kHz pulse,

is equal to 184 kHz. The refocussing pulse is therefore the unequivocal weak link in a

conventional spin echo.

The shortcomings can be addressed by employing frequency stepping at the ex-

pense of increased experiment time, and the inconvenience of retuning the probe be-

tween the acquisition of each new sub-spectrum. These disadvantages make it ex-

tremely difficult, if not impossible, to incorporate the frequency-stepping scheme into

more complex experiments.
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The short, high-powered adiabatic pulses (SHAPs) can be used for broadband in-

version and refocussing as they satisfy all three criteria for broadband NMR under

MAS conditions. The isotropic shift bandwidth is also considerably larger than for

conventional pulses, typically taking values up to 2 MHz for an RF field amplitude of

400 kHz (Fig. 25). They are therefore efficacious when used for refocussing in spin

echoes, but cannot currently be used for excitation.

The single-sideband-selective adiabatic inversion pulses (S3APs), when applied to

the centreband of a spinning sideband manifold, satisfy the last two criteria for broad-

band NMR, namely inversion over a range of SAs from zero to a maximum of the

order of 100 kHz for all crystallite orientations. However the range of isotropic shifts

for which inversion is achieved is more limited and must be in the vicinity of ωtx + kωr

where k is an integer. The inversion profile as a function of isotropic shift therefore

contains a number of ‘holes’ in which inversion is comparatively poor, and so the first

condition is not satisfied. In addition excitation has yet to be implemented with these

pulses.

The same considerations also apply to delays alternating with nutation for tailored

excitation (DANTE) in that the last two criteria are satisfied, but the first is not. The

range of isotropic shifts that is inverted is actually smaller than for the S3AP as each

individual spikelet in the inversion profile has a narrower bandwidth than the low-

power adiabatic pulse, in exactly the same way that adiabatic inversion pulses are more

broadband than conventional RF pulses. However DANTE can be applied to excitation

if the first criterion is not too restrictive for the sample under consideration.

For spin-1/2 systems where the spectra are within the probe bandwidth, the best

choice of excitation pulse is currently the conventional constant-amplitude 90◦ pulse.

We expect that the bandwidth is not the largest that is available, but considering the

current state of the art it is certainly the safest choice with no holes in the excitation

window of isotropic shifts. In addition the short pulse length renders relaxation losses

negligible even for very short coherence lifetimes T ′2 of the order of 10–100 µs. To

complete the spin-echo sequence we recommend the SHAPs for coherence refocussing
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to give the following

90◦ − τr/2 − SHAP − τr/2 − τr/2 − SHAP − τr2 − aqc. (164)

with a phase cycle where the cycles of both SHAPs are nested according to EXOR-

CYCLE. The choice of the SHAP reflects that, out of the currently available pulse

schemes, it is the one that best satisfies the three criteria for broadband NMR and, with

pulse lengths of approximately 50 µs, can also be used for fast-relaxing systems. Both

of these properties make it more suitable than either the S3AP or DANTE for working

with paramagnetic systems containing several nuclear sites with unknown isotropic

shifts, or with significant inhomogeneous broadening of the sidebands. This sequence

can also be used for quadrupolar nuclei with relatively small quadrupole moments CQ,

such as 6Li and 7Li [34, 35]. The SHAPs have also been demonstrated versatility as

they have been incorporated into more complex sequences including CPMG [74] and

the two-dimensional sideband-separation experiment aMAT [33].

There are two instances where the above double SHAP echo is not the best choice

of sequence. Systems containing nuclei with particularly large PREs will suffer from

very large intensity losses during the sequence, and if the T ′2 is particularly short, say

of the order of 10 µs there will be no signal remaining at the end of the sequence as the

combined length of the two SHAPs is of the order of 100 µs. In this case it will be best

to use either a conventional spin-echo sequence

90◦ − τr − 180◦ − τr − aqc., (165)

or a stimulated-echo sequence of the form

90◦ − τr − 90◦ − τz − 90◦ − τr − aqc., (166)

combined with appropriate phase cycling so that the coherence order is +1 during the

first delay τr, 0 during the z-filter delay τz, and −1 during the second delay τr [101].

The stimulated echo has the advantage over the conventional spin echo in that it does

not suffer from the low bandwidth of the 180◦ pulse but, in the absence of relaxation
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effects, it has a maximum sensitivity equal to half that of the spin echo as only half

the available signal is refocussed. The stimulated echo has also been used as part of a

MAT sequence with greater bandwidth than the conventional form of the experiment

with five 180◦ pulses [101]. Secondly the performance of the SHAP can break down

when applied to quadrupolar nuclei with moderate-to-high CQ values, such as 23Na,
27Al, or 17O. This is ascribed to the SHAP not having a sufficiently large bandwidth to

manipulate the central transition and satellites so that all are excited quantitatively, nor

being selective to the central transition due to the necessity of using a sweep width and

RF field amplitude in order to counter the paramagnetic effects. In these cases the best

choice of sequence is a conventional spin echo [102, 103].
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[7] A. Flambard, F. H. Köhler, R. Lescouëzec, Revisiting Prussian blue analogues

with solid-state MAS NMR spectroscopy: Spin density and local structure in

[Cd3[Fe(CN)6]2]·15H2O], Angew. Chem. Int. Ed. 48 (2009) 1673–1676.

[8] I. Bertini, L. Emsley, M. Lelli, C. Luchinat, J. F. Mao, G. Pintacuda, Ultrafast

MAS solid-state NMR permits extensive C-13 and H-1 detection in paramag-

netic metalloproteins, J. Am. Chem. Soc. 132 (2010) 5558–5559.

[9] J. Estephane, E. Groppo, J. G. Vitillo, A. Damin, D. Gianolio, C. Lamberti,

S. Bordiga, E. A. Quadrelli, J. M. Basset, G. Kervern, L. Emsley, G. Pintacuda,

A. Zecchina, A multitechnique approach to spin-flips for Cp2Cr(II) chemistry in

confined state, J. Phys. Chem. C 114 (2010) 4451–4458.

[10] M. J. Knight, A. J. Pell, I. Bertini, I. C. Felli, L. Gonnelli, R. Pierattelli, T. Her-

rmann, L. Emsley, G. Pintacuda, Structure and backbone dynamics of a micro-

105



crystalline metalloprotein by solid-state NMR, Proc. Natl. Acad. Sci. USA 109

(2012) 11095–11100.

[11] C. Luchinat, G. Parigi, E. Ravera, M. Rinaldelli, Solid-state NMR crystallogra-

phy through paramagnetic restraints, J. Am. Chem. Soc. 134 (2012) 5006–5009.

[12] A. W. MacGregor, L. A. O’Dell, R. W. Schurko, New methods for the acqui-

sition of ultra-wideline solid-state NMR spectra of spin-1/2 nuclides, J. Magn.

Reson. 208 (2011) 103–111.

[13] L. A. O’Dell, A. J. Rossini, R. W. Schurko, Acquisition of ultra-wideline

NMR spectra from quadrupolar nuclei by frequency-stepped WURST-QCPMG,

Chem. Phys. Lett. 468 (2009) 330–335.

[14] K. Harris, A. Lupulescu, B. E. G. Lucier, L. Frydman, R. W. Schurko, Broad-

band adiabatic inversion pulses for cross polarization in wideline solid-state

NMR spectroscopy, J. Magn. Reson. 224 (2012) 28–47.

[15] E. R. Andrew, A. Bradbury, R. G. Eades, Removal of dipolar broadening of

nuclear magnetic resonance spectra of solids by specimen rotation, Nature 183

(1959) 1802–1803.

[16] Y. Ishii, N. P. Wickramasinghe, S. Chimon, A new approach in 1D and 2D C-13

high-resolution solid-state NMR spectroscopy of paramagnetic organometallic

complexes by very fast magic-angle spinning, J. Am. Chem. Soc. 125 (2003)

3438–3439.

[17] S. W. Sparks, P. D. Ellis, 195Pt shielding tensors in potassium hexachloroplati-

nate(IV) and potassium tetrachloroplatinate(II), J. Am. Chem. Soc. 108 (1986)

3215–3218.

[18] A. J. Pell, R. J. Clément, C. P. Grey, L. Emsley, G. Pintacuda, Frequency-stepped

acquisition in nuclear magnetic resonance spectroscopy under magic angle spin-

ning, J. Chem. Phys. 138 (2013) 114201.

106



[19] G. Kervern, G. Pintacuda, L. Emsey, Fast adiabatic pulses for solid-state NMR

of paramagnetic systems, Chem. Phys. Lett. 435 (2007) 157–162.

[20] R. Siegel, T. T. Nakashima, R. E. Wasylishen, Sensitivity enhancement of NMR

spectra of half-integer spin quadrupolar nuclei in solids using hyperbolic secant

pulses, J. Magn. Reson. 184 (2007) 85–100.

[21] K. K. Dey, S. Prasad, J. T. Ash, M. Deschamps, P. J. Grandinetti, Spectral edit-

ing in solid-state MAS NMR of quadrupolar nuclei using selective satellite in-

version, J. Magn. Reson. 185 (2007) 326–330.

[22] T. T. Nakashima, R. E. Wasylishen, R. Siegel, K. J. Ooms, Sensitivity en-

hancement of solid-state NMR spectra of half-integer spin quadrupolar nuclei:

Double- or single-frequency sweeps? Insights from the hyperbolic secant exper-

iment, Chem. Phys. Lett. 450 (2008) 417–421.

[23] T. T. Nakashima, R. Teymoori, R. E. Wasylishen, Using hyperbolic secant

pulses to assist characterization of chemical shift tensors for half-integer spin

quadrupolar nuclei in MAS powder samples, Magn. Reson. Chem. 47 (2009)

465–471.

[24] A. J. Pell, G. Kervern, L. Emsley, M. Deschamps, D. Massiot, P. J. Grandinetti,

G. Pintacuda, Broadband inversion for MAS NMR with single-sideband-

selective adiabatic pulses, J. Chem. Phys. 134 (2011) 024117.

[25] V. Vitzthum, M. A. Caporini, S. Ulzega, G. Bodenhausen, Broadband excitation

and indirect detection of nitrogen-14 in rotating solids using Delays Alternating

with Nutation (DANTE), J. Magn. Reson. 212 (2011) 234–239.

[26] T. L. Hwang, A. J. Shaka, Water suppression that works. Excitation sculpting

using arbitrary wave-forms and pulsed-field gradients, J. Magn. Reson. Ser. A

112 (1995) 275–279.

[27] K. Stott, J. Stonehouse, J. Keeler, T. L. Hwang, A. J. Shaka, Excitation sculpt-

ing in high-resolution nuclear magnetic resonance spectroscopy: Application to

selective NOE experiments, J. Am. Chem. Soc. 117 (1995) 4199–4200.

107



[28] A. Pines, M. G. Gibby, J. S. Waugh, Proton-enhanced NMR of dilute spins in

solids, J. Chem. Phys. 59 (1973) 569–590.

[29] N. P. Wickramasinghe, Y. Ishii, Sensitivity enhancement, assignment, and dis-

tance measurement in C-13 solid-state NMR spectroscopy for paramagnetic sys-

tems under fast magic angle spinning, J. Magn. Reson. 181 (2006) 233–243.

[30] S. K. K. Swamy, A. Karczmarska, M. Makowska-Janusik, A. Kassiba,

J. Dittmer, Solid-state NMR correlation experiments and distance measurements

in paramagnetic metalorganics exemplified by Cu-Cyclam, ChemPhysChem 14

(2013) 1864–1870.

[31] E. L. Hahn, Spin echoes, Phys. Rev. 80 (1950) 580–594.

[32] G. Kervern, A. D’Aleo, O. Maury, L. Emsley, G. Pintacuda, Crystal structure

determination of powdered paramagnetic lanthanide complexes by proton NMR,

Angew. Chem. Int. Ed. Engl. 48 (2009) 3082–3086.

[33] R. J. Clément, A. J. Pell, D. S. Middlemiss, F. C. Strobridge, J. K. Miller, M. S.

Whittingham, L. Emsley, C. P. Grey, G. Pintacuda, Spin-transfer pathways in

paramagnetic lithium transition metal phosphates from combined broadband

isotropic solid-state MAS NMR spectroscopy and DFT calculations., J. Am.

Chem. Soc. 134 (2012) 17178–17185.

[34] M. Bini, S. Ferrari, C. Ferrara, M. C. Mozzati, D. Capsoni, A. J. Pell, G. Pin-

tacuda, P. Canton, P. Mustarelli, Polymorphism and magnetic properties of

Li2MSiO4 (M = Fe, Mn) cathode materials, Sci. Rep. 3 (2013) 3452.

[35] J. Xu, R. J. Lee, R. J. Clément, X. Yu, M. Leskes, A. J. Pell, G. Pintacuda, X.-Q.

Yang, C. P. Grey, Y. S. Meng, Identifying the critical role of Li substitution in

P2−Nax[LiyNizMn1−y−z]O2 (0 < x, y, z < 1) intercalation cathode materials for

high energy Na-ion batteries, Chem. Mater. 26 (2014) 1260–1269.

[36] F. C. Strobridge, D. S. Middlemiss, A. J. Pell, M. Leskes, R. J. Clément, F. Pour-

point, Z. Lu, J. V. Hanna, G. Pintacuda, L. Emsley, A. Samoson, C. P. Grey,

108



Characterising local environments in high energy density Li-ion battery cath-

odes: a combined NMR and first principles study of LiFexCo1−xPO4, J. Mater.

Chem. A 2 (2014) 11948–11957.

[37] M. Mehring, Principles of High-Resolution NMR in Solids, Springer Verlag,

Berlin, 1983.

[38] M. M. Maricq, J. S. Waugh, NMR in rotating solids, J. Chem. Phys. 70 (1979)

3300–3316.

[39] P. Caravatti, G. Bodenhausen, R. R. Ernst, Selective pulse experiments in high-

resolution solid-state NMR, J. Magn. Reson. 55 (1983) 88–103.

[40] A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, Phospho-olivines as

positive-electrode materials for rechargeable lithium batteries, J. Electrochem.

Soc. 144 (1997) 1188–1194.

[41] J. Kim, D.-H. Seo, S.-W. Kim, Y.-U. Park, K. Kang, Mn based olivine electrode

material with high power and energy, Chem. Commun. 46 (2010) 1305–1307.

[42] D. S. Middlemiss, A. J. Ilott, R. J. Clément, F. C. Strobridge, C. P. Grey, Den-

sity functional theory-based bond pathway decompositions of hyperfine shifts:

Equipping solid-state NMR to characterize atomic environments in paramag-

netic materials, Chem. Mater. 25 (2013) 1723–1734.

[43] T. L. Hwang, P. C. M. van Zijl, M. Garwood, Fast broadband inversion by adia-

batic pulses, J. Magn. Reson. 133 (1998) 200–203.

[44] M. Veshtort, R. G. Griffin, SPINEVOLUTION: A powerful tool for the simu-

lation of solid and liquid state nmr experiments, J. Magn. Reson. 178 (2006)

248–282.

[45] M. Edén, M. H. Levitt, Computation of orientational averages in solid-state nmr

by Gaussian spherical quadrature, J. Magn. Reson. 132 (1998) 220–239.

[46] I. Bertini, C. Luchinat, G. Parigi, Solution NMR of paramagnetic molecules;

application to metallobiomolecules and models, Elsevier, London, 2001.

109



[47] I. Bertini, C. Luchinat, G. Parigi, Magnetic susceptibility in paramagnetic NMR,

Prog. Nucl. Magn. Reson. Spectrosc. 40 (2002) 249–273.
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List of abbreviations

ABMS: anisotropic bulk magnetic susceptibility

aMAT: adiabatic magic-angle turning

BRAIN-CP: broadband adiabatic inversion cross polarization

CP: cross polarization

CPMG: Carr-Purcell-Meiboom-Gill

CSA: chemical shift anisotropy

DFT: density functional theory

DANTE: delays alternating with nutation for tailored excitation

EPR: electron paramagnetic resonance

HSQC: heteronuclear single quantum correlation

INEPT: insensitive nuclei enhanced by polarization transfer
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MAS: magic-angle spinning

MAT: magic-angle turning

MRI: magnetic resonance imaging

NMR: nuclear magnetic resonance

NOE: nuclear Overhauser effect

PAF: principal axis frame

PASS: phase-adjusted spinning sidebands

PRE: paramagnetic relaxation enhancement

RF: radiofrequency

S3AP: single-sideband-selective adiabatic pulse

SA: shift anisotropy

SHAP: short, high-power adiabatic pulse

SHAP-CPMG: short, high-power adiabatic pulse Carr-Purcell-Meiboom-Gill

TEDOR: transferred echo double resonance

TM: transition metal

VOCS: variable offset cumulative spectroscopy

WURST: wideband, uniform rate, and smooth truncation

WURST-CPMG: wideband, uniform rate, and smooth truncation Carr-Purcell-Meiboom-

Gill

XS: crystallite-selective pulse scheme

ZFS: zero-field splitting
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