8 research outputs found

    A next-generation liquid xenon observatory for dark matter and neutrino physics

    Get PDF
    The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector

    Rapid prototyping of patterned functional nanostructures

    No full text
    Living systems exhibit form and function on multiple length scales, and the prospect of imparting life-like qualities to man-made materials has inspired many recent efforts to devise hierarchical materials assembly strategies. For example, Yang et al. grew surfactant-templated mesoporous silica on hydrophobic patterns prepared by micro-contact printing {micro}CP{sup 3}. Trau et al. formed oriented mesoporous silica patterns, using a micro-molding in capillaries MIMIC technique, and Yang et al. combined MIMIC, polystyrene sphere templating, and surfactant-templating to create oxides with three levels of structural order. Overall, great progress has been made to date in controlling structure on scales ranging from several nanometers to several micrometers. However, materials prepared have been limited to oxides with no specific functionality, whereas for many of the envisioned applications of hierarchical materials in micro-systems, sensors, waveguides, photonics, and electronics, it is necessary to define both form and function on several length scales. In addition, the patterning strategies employed thus far require hours or even days for completion. Such slow processes are inherently difficult to implement in commercial environments. The authors have combined evaporation-induced (silica/surfactant) self-assembly EISA with rapid prototyping techniques like pen lithography, ink-jet printing, and dip-coating on micro-contact printed substrates to form hierarchically organized structures in seconds. In addition, by co-condensation of tetrafunctional silanes (Si(OR){sub 4}) with tri-functional organosilanes ((RO){sub 3}SiR{prime}){sup 12--14} or by inclusion of organic additives, the authors have selectively derivatized the silica framework with functional R{prime} ligands or molecules. The resulting materials exhibit form and function on multiple length scales: on the molecular scale, functional organic moieties are positioned on pore surfaces, on the mesoscale, monosized pores are organized into 1-, 2-, or 3-dimensional networks, providing size-selective accessibility from the gas or liquid phase, and on the macroscale, 2-dimensional arrays and fluidic or photonic systems may be defined

    Non-inferiority double-blind randomised controlled trial comparing gabapentin versus tramadol for the treatment of chronic neuropathic or mixed pain in children and adolescents: The GABA-1 trial-a study protocol

    No full text
    Introduction Gabapentin is currently used Ăą € off-label' in children and adolescents with chronic neuropathic pain, and reliable evidence of its effects and optimal dosing are lacking. Objectives The GABA-1 trial aims to compare the efficacy and safety of gabapentin liquid formulation relative to tramadol and to explore the pharmacokinetics of both drugs in the treatment of chronic, neuropathic or mixed pain in the paediatric population. Methods and analysis The trial is a multicentre, double-blind, double-dummy, randomised, active-controlled, non-inferiority trial. Participants aged from 3 months to <18 years of age with moderate to severe (≄4/10 in age-appropriate pain scales) chronic neuropathic or mixed pain will be recruited in 14 clinical sites in eight European countries. A total of 94 subjects will be randomised to receive gabapentin and tramadol placebo or tramadol and gabapentin placebo throughout 16-19 weeks (including 3 weeks of titration [optimisation period], 12 weeks of treatment at a stable dose [maintenance period] and 1-4 weeks of tapering [discontinuation period]). The primary objective is to assess the efficacy of gabapentin relative to tramadol for the treatment of moderate to severe chronic neuropathic or mixed pain by comparing the difference in average pain scores (assessed by age-appropriate pain scales) between intervention arms after 15 weeks of treatment. Secondary objectives include the assessment of the safety, quality of life and global satisfaction with treatment and the description of the pharmacokinetic-pharmacodynamic relationship of gabapentin liquid formulation and tramadol oral drops to validate the recommended paediatric doses. Only rescue pain medication by paracetamol and/or ibuprofen is allowed during the trial. Ethics and dissemination Ethic approval was obtained in the eight participating countries. Results will be submitted for publication in a peer-reviewed journal and presented at one or more scientific conferences. Trial registration numbers 2014-004851-30 and NCT02722603. Trial status Ongoing research study, currently recruiting

    A next-generation liquid xenon observatory for dark matter and neutrino physics

    No full text
    Abstract The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector.</jats:p

    A next-generation liquid xenon observatory for dark matter and neutrino physics

    No full text

    A next-generation liquid xenon observatory for dark matter and neutrino physics

    Get PDF
    Abstract The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector.</jats:p
    corecore