86 research outputs found

    The bacteriohopanepolyol inventory of novel aerobic methane oxidising bacteria reveals new biomarker signatures of aerobic methanotrophy in marine systems

    Get PDF
    Aerobic methane oxidation (AMO) is one of the primary biologic pathways regulating the amount of methane (CH4) released into the environment. AMO acts as a sink of CH4, converting it into carbon dioxide before it reaches the atmosphere. It is of interest for (paleo)climate and carbon cycling studies to identify lipid biomarkers that can be used to trace AMO events, especially at times when the role of methane in the carbon cycle was more pronounced than today. AMO bacteria are known to synthesise bacteriohopanepolyol (BHP) lipids. Preliminary evidence pointed towards 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol) being a characteristic biomarker for Type I methanotrophs. Here, the BHP compositions were examined for species of the recently described novel Type I methanotroph bacterial genera Methylomarinum and Methylomarinovum, as well as for a novel species of a Type I Methylomicrobium. Aminopentol was the most abundant BHP only in Methylomarinovum caldicuralii, while Methylomicrobium did not produce aminopentol at all. In addition to the expected regular aminotriol and aminotetrol BHPs, novel structures tentatively identified as methylcarbamate lipids related to C-35 amino-BHPs (MCBHPs) were found to be synthesised in significant amounts by some AMO cultures. Subsequently, sediments and authigenic carbonates from methane-influenced marine environments were analysed. Most samples also did not contain significant amounts of aminopentol, indicating that aminopentol is not a useful biomarker for marine aerobic methanotophic bacteria. However, the BHP composition of the marine samples do point toward the novel MC-BHPs components being potential new biomarkers for AMO

    Late Cretaceous (Maastrichtian) shallow water hydrocarbon seeps from Snow Hill and Seymour Islands, James Ross Basin, Antarctica

    Get PDF
    Fossil hydrocarbon seeps are present in latest Cretaceous (Maastrichtian) volcaniclastic shallow shelf sediments exposed on Snow Hill and Seymour Islands, James Ross Basin, Antarctica. The seeps occur in the Snow Hill Island Formation on Snow Hill Island and are manifest as large-sized, cement-rich carbonate bodies, containing abundant thyasirid bivalves and rarer ammonites and solemyid bivalves. These bodies have typical seep cement phases, with δ13C values between 20.4 and 10.7‰ and contain molecular fossils indicative of terrigenous organic material and the micro-organisms involved in the anaerobic oxidation of methane, including methanotrophic archaea and sulphate-reducing bacteria. On Seymour Island the seeps occur as micrite-cemented burrow systems in the López de Bertodano Formation and are associated with thyasirid, solemyid and lucinid bivalves, and background molluscan taxa. The cemented burrows also have typical seep cement phases, with δ13C values between 58.0 and 24.6‰. There is evidence from other data that hydrocarbon seepage was a common feature in the James Ross Basin throughout the Maastrichtian and into the Eocene. The Snow Hill and Seymour Island examples comprise the third known area of Maastrichtian hydrocarbon seepage. But compared to most other ancient and modern seep communities, the James Ross Basin seep fauna is of very low diversity, being dominated by infaunal bivalves, all of which probably had thiotrophic chemosymbionts, but which were unlikely to have been seep obligates. Absent from the James Ross Basin seep fauna are ‘typical’ obligate seep taxa from the Cretaceous and the Cenozoic. Reasons for this may have been temporal, palaeolatitudinal, palaeobathymetric, or palaeoecological

    Chromite oxidation by manganese oxides in subseafloor basalts and the presence of putative fossilized microorganisms

    Get PDF
    Chromite is a mineral with low solubility and is thus resistant to dissolution. The exception is when manganese oxides are available, since they are the only known naturally occurring oxidants for chromite. In the presence of Mn(IV) oxides, Cr(III) will oxidise to Cr(VI), which is more soluble than Cr(III), and thus easier to be removed. Here we report of chromite phenocrysts that are replaced by rhodochrosite (Mn(II) carbonate) in subseafloor basalts from the Koko Seamount, Pacific Ocean, that were drilled and collected during the Ocean Drilling Program (ODP) Leg 197. The mineral succession chromite-rhodochrosite-saponite in the phenocrysts is interpreted as the result of chromite oxidation by manganese oxides. Putative fossilized microorganisms are abundant in the rhodochrosite and we suggest that the oxidation of chromite has been mediated by microbial activity. It has previously been shown in soils and in laboratory experiments that chromium oxidation is indirectly mediated by microbial formation of manganese oxides. Here we suggest a similar process in subseafloor basalts

    Catshark egg capsules from a Late Eocene deep-water methane-seep deposit in western Washington State, USA

    No full text
    Fossil catshark egg capsules, Scyliorhinotheca goederti gen. et sp. nov., are reported from a Late Eocene deep−water methane−seep calcareous deposit in western Washington State, USA. The capsules are preserved three−dimensionally and some show mineralized remnants of the ribbed capsule wall consisting of small globular crystals that are embedded in a microsparitic matrix. The globules are calcitic, but a strontium content of 2400–3000 ppm suggests that they were origi− nally aragonitic. The carbonate enclosing the egg capsules, and the capsule wall itself, show 13C values as low as −36.5‰, suggesting that formation was induced by the anaerobic oxidation of methane and hence in an anoxic environ− ment. We put forward the following scenario for the mineralization of the capsule wall: (i) the collagenous capsules expe− rienced a sudden change from oxic to anoxic conditions favouring an increase of alkalinity; (ii) this led to the precipitation of aragonitic globules within the collagenous capsule wall; (iii) subsequently the remaining capsule wall was mineralized by calcite or aragonite; (iv) finally the aragonitic parts of the wall recrystallized to calcite. The unusual globular habit of the early carbonate precipitates apparently represents a taphonomic feature, resulting from mineralization mediated by an organic matrix. Taphonomic processes, however, are at best contributed to an increase of alkalinity, which was mostly driven by methane oxidation at the ancient seep site

    Sex determination from the calcaneus in a 20th century Greek population using discriminant function analysis

    No full text
    The skull and post-cranium have been used for the determination of sex for unknown human remains. However, in forensic cases where skeletal remains often exhibit postmortem damage and taphonomic changes the calcaneus may be used for the determination of sex as it is a preservationally favored bone. The goal of the present research was to derive discriminant function equations from the calcaneus for estimation of sex from a contemporary Greek population. Nine parameters were measured on 198 individuals (103 males and 95 females), ranging in age from 20 to 99 years old, from the University of Athens Human Skeletal Reference Collection. The statistical analyses showed that all variables were sexually dimorphic. Discriminant function score equations were generated for use in sex determination. The average accuracy of sex classification ranged from 70% to 90% for the univariate analysis, 82.9% to 87.5% for the direct method, and 86.2% for the stepwise method. Comparisons to other populations were made. Overall, the cross-validated accuracies ranged from 48.6% to 56.1% with males most often identified correctly and females most often misidentified. The calcaneus was shown to be useful for sex determination in the twentieth century Greek population. © 2015 The Chartered Society of Forensic Sciences
    corecore