371 research outputs found

    Quantifying susceptibility of marine invertebrate biocomposites to dissolution in reduced pH

    Get PDF
    Ocean acidification threatens many ecologically and economically important marine calcifiers. The increase in shell dissolution under the resulting reduced pH is an important and increasingly recognized threat. The biocomposites that make up calcified hardparts have a range of taxon-specific compositions and microstructures, and it is evident that these may influence susceptibilities to dissolution. Here, we show how dissolution (thickness loss), under both ambient and predicted end-century pH (approx. 7.6), varies between seven different bivalve molluscs and one crustacean biocomposite and investigate how this relates to details of their microstructure and composition. Over 100 days, the dissolution of all microstructures was greater under the lower pH in the end-century conditions. Dissolution of lobster cuticle was greater than that of any bivalve microstructure, despite its calcite mineralogy, showing the importance of other microstructural characteristics besides carbonate polymorph. Organic content had the strongest positive correlation with dissolution when all microstructures were considered, and together with Mg/Ca ratio, explained 80–90% of the variance in dissolution. Organic content, Mg/Ca ratio, crystal density and mineralogy were all required to explain the maximum variance in dissolution within only bivalve microstructures, but still only explained 50–60% of the variation in dissolution.</jats:p

    Exploring perceptions of common practices immediately following burn injuries in rural communities of Bangladesh

    Get PDF
    © 2018 The Author(s). Background: Burns can be the most devastating injuries in the world, they constitute a global public health problem and cause widespread public health concern. Every year in Bangladesh more than 365,000 people are injured by electrical, thermal and other causes of burn injuries. Among them 27,000 need hospital admission and over 5600 people die. Immediate treatment and medication has been found to be significant in the success of recovering from a burn. However, common practices used in the treatment of burn injuries in the community is not well documented in Bangladesh. This study was designed to explore the perception of local communities in Bangladesh the common practices used and health-seeking behaviors sought immediately after a burn injury has occurred. Methods: A qualitative study was conducted using Focus Group Discussions (FGD) as the data collection method. Six unions of three districts in rural Bangladesh were randomly selected and FGDs were conducted in these districts with six burn survivors and their relatives and neighbours. Data were analyzed manually, codes were identified and the grouped into themes. Results: The participants stated that burn injuries are common during the winter in Bangladesh. Inhabitants in the rural areas said that it was common practice, and correct, to apply the following to the injured area immediately after a burn: egg albumin, salty water, toothpaste, kerosene, coconut oil, cow dung or soil. Some also believed that applying water is harmful to a burn injury. Most participants did not know about any referral system for burn patients. They expressed their dissatisfaction about the lack of available health service facilities at the recommended health care centers at both the district level and above. Conclusions: In rural Bangladesh, the current first-aid practices for burn injuries are incorrect; there is a widely held belief that using water on burns is harmful

    Scallop swimming kinematics and muscle performance: modelling the effects of "within-animal" variation in temperature sensitivity

    Get PDF
    Escape behaviour was investigated in Queen scallops (Aequipecten opercularis) acclimated to 5, 10 or 15 degrees C and tested at their acclimation temperature. Scallops are active molluscs, able to escape from predators by jet-propelled swimming using a striated muscle working in opposition to an elastic hinge ligament. The first cycle of the escape response was recorded using high-speed video ( 250 Hz) and whole-animal velocity and acceleration determined. Muscle shortening velocity, force and power output were calculated using measurements of valve movement and jet area, and a simple biomechanical model. The average shortening speed of the adductor muscle had a Q(10) of 2.04, significantly reducing the duration of the jetting phase of the cycle with increased temperature. Muscle lengthening velocity and the overall duration of the clap cycle were changed little over the range 5 - 15 degrees C, as these parameters were controlled by the relatively temperature-insensitive, hinge ligament. Improvements in the average power output of the adductor muscle over the first clap cycle ( 222 vs. 139 W kg(-1) wet mass at 15 and 5 degrees C respectively) were not translated into proportional increases in overall swimming velocity, which was only 32% higher at 15 degrees C ( 0.37m s(-1)) than 5 degrees C (0.28 m s(-1))

    Some Like It Fat: Comparative Ultrastructure of the Embryo in Two Demosponges of the Genus Mycale (Order Poecilosclerida) from Antarctica and the Caribbean

    Get PDF
    0000-0002-7993-1523© 2015 Riesgo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License [4.0], which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article

    Climate Change and invasibility of the Antarctic benthos

    No full text
    Benthic communities living in shallow-shelf habitats in Antarctica (&lt;100-m depth) are archaic in their structure and function. Modern predators, including fast-moving, durophagous (skeleton-crushing) bony fish, sharks, and crabs, are rare or absent; slow-moving invertebrates are the top predators; and epifaunal suspension feeders dominate many soft substratum communities. Cooling temperatures beginning in the late Eocene excluded durophagous predators, ultimately resulting in the endemic living fauna and its unique food-web structure. Although the Southern Ocean is oceanographically isolated, the barriers to biological invasion are primarily physiological rather than geographic. Cold temperatures impose limits to performance that exclude modern predators. Global warming is now removing those physiological barriers, and crabs are reinvading Antarctica. As sea temperatures continue to rise, the invasion of durophagous predators will modernize the shelf benthos and erode the indigenous character of marine life in Antarctica

    Lack of long-term acclimation in Antarctic encrusting species suggests vulnerability to warming

    Get PDF
    Marine encrusting communities play vital roles in benthic ecosystems and have major economic implications with regards to biofouling. However, their ability to persist under projected warming scenarios remains poorly understood and is difficult to study under realistic conditions. Here, using heated settlement panel technologies, we show that after 18 months Antarctic encrusting communities do not acclimate to either +1 °C or +2 °C above ambient temperatures. There is significant up-regulation of the cellular stress response in warmed animals, their upper lethal temperatures decline with increasing ambient temperature and population genetic analyses show little evidence of differential survival of genotypes with treatment. By contrast, biofilm bacterial communities show no significant differences in community structure with temperature. Thus, metazoan and bacterial responses differ dramatically, suggesting that ecosystem responses to future climate change are likely to be far more complex than previously anticipated

    A 2017 Horizon Scan of Emerging Issues for Global Conservation and Biological Diversity

    Get PDF
    We present the results of our eighth annual horizon scan of emerging issues likely to affect global biological diversity, the environment, and conservation efforts in the future. The potential effects of these novel issues might not yet be fully recognized or understood by the global conservation community, and the issues can be regarded as both opportunities and risks. A diverse international team with collective expertise in horizon scanning, science communication, and conservation research, practice, and policy reviewed 100 potential issues and identified 15 that qualified as emerging, with potential substantial global effects. These issues include new developments in energy storage and fuel production, sand extraction, potential solutions to combat coral bleaching and invasive marine species, and blockchain technology.Cambridge Conservation Initiative, funded by the Natural Environment Research Council and the Royal Society for the Protection of Birds, Arcadia, Natural Environment Research Council (Grant ID: NE/N014472/1

    Age, Sex, and Socio-Economic Status Affect the Incidence of Pediatric Spinal Cord Injury: An Eleven-Year National Cohort Study

    Get PDF
    Few studies focus on pediatric spinal cord injury (SCI) and there is little information regarding the cause, anatomic level, and high risk population of SCI in children. This study aims to investigate the incidence and risk factors of pediatric SCI.A nationwide cohort of 8.7 million children aged<18 years in an 11-year period was analyzed for causes, age at injury, anatomic sites, disability, and familial socio-economic factors. Incidence rates and Cox regression analysis were conducted.<0.05).In the pediatric population, the overall SCI incidence rate is 5.99 per 100,000 person-years, with traumatic cervical SCI accounting for the majority. The incidence rate increases abruptly in male teenagers. Gender, age, and socio-economic status are independent risk factors that should be considered
    corecore