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ARTICLE

Lack of long-term acclimation in Antarctic
encrusting species suggests vulnerability
to warming
Melody S. Clark 1, Leyre Villota Nieva1,2, Joseph I. Hoffman 3, Andrew J. Davies 4, Urmi H. Trivedi5,

Frances Turner5, Gail V. Ashton 6 & Lloyd S. Peck 1

Marine encrusting communities play vital roles in benthic ecosystems and have major eco-

nomic implications with regards to biofouling. However, their ability to persist under pro-

jected warming scenarios remains poorly understood and is difficult to study under realistic

conditions. Here, using heated settlement panel technologies, we show that after 18 months

Antarctic encrusting communities do not acclimate to either +1 °C or +2 °C above ambient

temperatures. There is significant up-regulation of the cellular stress response in warmed

animals, their upper lethal temperatures decline with increasing ambient temperature and

population genetic analyses show little evidence of differential survival of genotypes with

treatment. By contrast, biofilm bacterial communities show no significant differences in

community structure with temperature. Thus, metazoan and bacterial responses differ dra-

matically, suggesting that ecosystem responses to future climate change are likely to be far

more complex than previously anticipated.
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Understanding why different species thrive or fail under
changing environmental conditions is crucial for pre-
dicting future biodiversity. In terms of underlying

mechanisms, acclimation and physiological flexibility have been
proposed as the two main routes dictating the success or failure of
species under future climate change scenarios, particularly for
long-lived species1. This is based on the premise that genetic
adaptation in species with long generation times and extended
lifespans will not be rapid enough to enable animals to cope with
the current rate of climate change1–3. Thus, knowledge of the
extent of phenotypic plasticity within populations and the capa-
city of genotypes to produce different phenotypes in response to
environmental change is crucial in predicting how global biodi-
versity will be affected by future warming1–3. However, obtaining
knowledge of such mechanisms is particularly problematical in
long-lived species, such as polar marine invertebrates. Their low
metabolic rates and low-energy lifestyles mean that ecological
observations of persistence in a warmer world do not necessarily
correlate with fitness and population sustainability2,3. Long-term
experimental manipulations of these species is difficult due to the
extended timescales (of years) needed for each chronic exposure
experiment, as well as the difficulty in accurately reproducing the
biotic and abiotic variables which occur in the natural environ-
ment over long periods.

Encrusting communities are ubiquitous and major contributors
to benthic biodiversity and community dynamics globally4–6.
Their ability to rapidly colonise hard substrata also has serious
economic implications in terms of biofouling7. Hence, there is a
major interest in how this community will perform under future
climate change scenarios. However, such evaluations are now
possible on encrusting (filter feeding) species due to the recent
development of in situ heated settlement panels8. This technology
enables us to heat the thin surface layer of water (up to 5 mm)
above the panels to +1 and +2 °C above ambient temperature,
matching the 50 and 100 years predictions for warming in the
Southern Ocean respectively9. This system simulates oceanic
warming predictions in the natural environment while main-
taining natural cycles of temperature variation, light regime and
food supply. The advantage of their use with polar species is that
because these cold-adapted species grow very slowly (on average
5× slower than temperate species3), even after two or more years,
they do not outgrow the heated water layer. Hence, deployment
of these panels in the polar regions provides an unparalleled
opportunity to conduct ecologically relevant long-term studies
and investigate the molecular mechanisms underpinning
responses to chronic warming in threatened sub-zero marine
ecosystems.

The Antarctic Peninsula is a region of the globe that has
experienced some of the most rapid rates of regional climate
warming over the past 50 years10. Although there are indications
that the atmospheric warming may have ceased, there is no evi-
dence to suggest that this trend is reflected in oceanographic data,
which reveal ongoing reductions in annual sea ice and glacier
retreat11,12. This has significant implications for the marine biota,
especially the filter feeders13. The reduction in sea ice alters water
stratification and mixing, which directly affects the strength of the
summer phytoplankton bloom11. There is also evidence that
warming is increasing the proportion of nanophytoplankton in
the bloom and therefore changing food availability11,14. The
Antarctic marine environment is highly seasonal and the long
Antarctic winter results in a significant and prolonged reduction
in phytoplankton15. Filter feeders need to ensure sufficient
accumulation of food stores during the relatively short summer
season to survive this famine through to the next bloom
period15,16. Given the changing bloom conditions, filter feeders
are more likely to be affected in the near future compared to non-

filter feeding species (detritivores, carnivores etc) and are thus
useful indicator species for the effects of climate change.

The initial 2017 heated settlement panel study8 demonstrated
the massive impacts of warming on the encrusting marine
assemblages, with a near doubling of growth rates of the
encrusting species. This was a very surprising result, especially for
such slow growing Antarctic species. Although the experiment
was terminated at the end of the Austral summer, there were
indications that animal growth rates were starting to slow
alongside the decline in the phytoplankton bloom. This left open
the questions of whether the encrusting species had acclimated to
the new conditions in the long term and, in particular, if they had
built up sufficient energy reserves to survive the dearth of their
food supply over the long Antarctic winter and maintain their
elevated metabolic rates in subsequent years.

In this study, heated settlement panels were deployed for
18 months in Ryder Bay near Rothera Research Station, Ant-
arctica. The prolonged timescale of the experiment enabled stu-
dies to encompass the critical winter period, described above.
Multiple, complementary aspects of the responses of the settle-
ment panel communities to warming were evaluated, with
responses to warming assessed in both encrusting filter feeders
and microbial biofilm communities. In this study, we specifically
used the responses of spirorbids (calcified marine worms) as
model species and proxies for the other encrusting community
species on the panels. This was because they were not only pre-
sent in sufficient numbers and of a sufficient size for the analyses
undertaken, but they also showed the same response to warming
as the other spatially dominant species on the panels in the ori-
ginal 2017 deployment8. Panels comprised controls (non-heated,
experiencing ambient temperatures roughly between −2 and
+1 °C17) and two sets warmed to +1 and +2 °C above ambient
sea water temperatures (referred to subsequently as +1 and +2).
The health of the spirorbid species under warming was investi-
gated using an RNA-Seq approach and expression profiling.
Furthermore, acute Upper Thermal Limit (UTL) experiments
were used to determine if physiological acclimation had occurred
at the whole animal level. The RNA-Seq data were also inter-
rogated for single-nucleotide polymorphisms (SNPs) to investi-
gate differential survival of genotypes between treatments using a
population genetics approach. Microbial biofilms can significantly
influence community composition18 and with their very short life
cycles would be expected to show more variation in community
composition with temperature. Therefore, to provide a contrast to
the slow growing, slowly developing metazoan encrusting species,
prokaryotic bacterial communities on the panels were also eval-
uated using amplicon sequencing of bacterial 16S rRNA.

Here, we report the results of our 18-month study, which
represents the longest acclimation trial on any Antarctic species
to date. To our knowledge, it includes some of the longest in situ
experimental manipulation of temperature anywhere in the
oceans to date (9–18 months). Previous acclimation trials have
revealed the very long timescales required for this process in
Antarctic marine species19, but this study reveals the extra-
ordinary sensitivity of the filter-feeding encrusting species to even
+1 °C of warming. The small size and solid calcified exoskeletons
of the spirorbids precludes the determination of animal health
using visual observation, but molecular analyses using RNA-Seq
show that they are unable to sustain cellular homoeostasis and are
likely in a process of extended decline. Population genetic ana-
lyses also reveal little evidence for differential selection of geno-
types with temperature. UTL analyses, furthermore, show no
increase in UTL in the spirorbids on the warmer plates and
therefore no acclimation at the whole animal level. There is no
significant difference in the composition of bacterial biofilm
communities with temperature and hence no impact of warming.
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This suggests that marine metazoan invertebrate and prokaryotic
responses to warming are very different, which in turn implies
that ecosystem responses to ongoing climate change are likely to
be far more complex than previously anticipated.

Results
Expression profiling of Protolaeospira stalagmia. The cellular
responses to warming of the endemic biota on the heated panels
were analysed via RNA-Seq expression profiling of the spirorbid
(P. stalagmia). Assembly of the raw reads from all samples pro-
duced over five million contigs greater than 100 bp that contained
over 4.28 Gb of data (Supplementary Table 1). A series of filtering
steps (described in Transcriptome methods) provided a reference
transcriptome containing 61,421 high-quality transcripts with the
mean length of 486 bp and a total size of 29.92Mb. Of these
transcripts, 23.86% contained putative protein sequences, out of
which 63.45% showed matches to known proteins from the
Swiss-Prot database and 33.92% possessed functional information
based on GO terms. While comprehensive searches were con-
ducted using different sequence databases (e.g., Pfam, SignalP,
TmHMM, eggnog, KEGG and GO), the most comprehensive
annotations were provided by the Swiss-Prot database (BlastX
and BlastP).

Differential expression analysis was then performed on the +1
and +2 samples, using the control samples as a baseline in both
cases. In the +1 sample versus control analysis, a total of 14,631
transcripts were significantly differentially expressed. The major-
ity of these transcripts (13,034) were up-regulated in the
+1 samples compared with the controls. Fewer transcripts were
differentially expressed between the +2 samples and the controls
(1020 in total) of which 1013 were up-regulated in the+2 samples
and only 7 down-regulated. Principal component analysis (PCA)
on the normalised and filtered expression data revealed there was
significant separation between each set of samples (control, +1,
and +2), with the first principle component explaining
approximately 57% of the variance of the data (P= 0.004)
(Fig. 1). The PCA plot shows that while there is good separation
between the +1 samples and both the other groups, one of the
+2 samples clusters with the control samples, which may explain
why fewer transcripts were differentially expressed in the +2

treatment compared to controls. GO enrichment analyses were
performed to identify if specific metabolic pathways or functional
groups were preferentially expressed in a particular treatment.
These analyses showed significant enrichment below the thresh-
old of the false discovery rate (FDR) of 0.05 for only the control
versus +2 comparison, which meant that these processes were
up-regulated and enriched in the +2 samples. There was a
significant reduction in representation of GO categories involved
in transcription (Molecular Function: rRNA binding and DNA
directed 5′–3′ RNA polymerase activity) in the control samples
compared with the +2 samples (Supplementary Table 2).

Thousands of transcripts were up-regulated in the+1 treatment
(14,631, or approximately 25% of the transcripts identified in this
study), which indicated that even with +1 °C of warming, the
animals had to significantly alter their cellular processes and
cellular physiologies to accommodate to the new temperature.
Given the lack of any GO enrichment for particular categories of
gene functions and the large number of transcripts involved,
more detailed analyses concentrated on the expression profiles of
the +2 samples examining the annotation of the up-regulated
transcripts. Of the 1013 transcripts up-regulated in the +2 ani-
mals (compared with controls), 312 were annotated via BlastX
and BlastP searches (Supplementary Data 1). Most striking about
this annotated gene set was the large-scale up-regulation of
transcription and translation processes, comprising almost one-
third of transcripts. The majority of these sequences were
ribosomal genes, but elongation and translation factors were also
present. These results corroborate the GO enrichment analyses
described above (Supplementary Table 2). Similarly there was up-
regulation of transcripts putatively involved in cell division (e.g.,
G2/mitotic-specific cyclins, proliferation proteins), histones,
which play major roles in chromatin organisation and regulation,
transcripts for protein degradation (e.g., E3 ubiquitin ligases), and
cellular respiration (e.g., cytochrome c oxidases). A number of
classical stress response transcripts were also up-regulated
including numerous heat-shock proteins and other chaperone
transcripts coding for T-complex proteins and peptidyl-prolyl cis-
trans isomerases (Supplementary Data 1). To identify critical
biochemical pathways, the STRING programme was used to
visualise protein–protein interactions and analyse enrichment.
This uncovered statistically significant enrichment of certain
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functional groups of proteins (P < 1.0e−16), with a major cluster
of transcription and translation proteins and satellite clusters of
proteins involved in post-translational modification, the cell cycle,
cytoskeleton and energy production (Supplementary Fig. 1).
PANTHER enrichment results, of the same dataset, were
dominated by GO terms associated with RNA metabolism and
cell division (Table 1). Overall, these data indicated the induction
of the classical stress response to the warmer conditions and a
lack of acclimation. The latter was further tested via acute UTL
analysis.

UTL analysis of Romanchella perrieri. Whole animal acclima-
tion is traditionally tested using acute UTL analyses. Due to the
limited representation of P. stalagmia on the panels, a closely
related spirorbid species (R. perrieri) was used to test UTLs
associated with treatment, with animals taken from the same sets
of panels, as were used as a source for the P. stalagmia and the
transcriptome experiments The UTL data supported the P. sta-
lagmia transcriptome analyses, with a lack of whole animal
acclimation in R. perrieri and a reduction in thermal resilience
associated with increased panel temperature (Fig. 2). A
Kruskal–Wallis test confirmed that there was a statistically sig-
nificant effect of panel treatment on the UTL of R. perrieri (H=
26.65, DF= 2, P= 0.000) and that mean UTL of the animals
declined with panel temperature (control= 20.20 °C ± 0.167 SE
mean, +1 panels= 19.26 °C ± 0.269 SE mean and +2 panels=
18.62 °C ± 0.167 SE mean). Mann–Whitney pairwise comparisons
revealed statistically significant differences between all the treat-
ments (control vs. +1 P= 0.0129; control vs. +2 P= 0.000;
+1 vs. +2 P= 0.0179) (Fig. 2). Thus the UTL declined in the
warmed individuals, contributing to evidence of a stress response,
as indicated in the molecular results above.

Population genetic analysis. In order to test for allele frequency
differences among the treatments, a total of 13,843 SNPs were
called from the RNA-Seq data according to strict criteria (see the
Methods for details). Analysing each SNP individually resulted in
no significant allele frequency differences among the groups after
FDR correction (Table 2). However, when the mean Z-scores of
SNPs across genes were assessed, 91 out of 521 genes (17.5%)
showed a significant association with temperature after FDR

correction (Table 2). It should be noted that these 91 genes
comprised only 0.14% of the total number of transcripts obtained
in this study. GO annotations could only be recovered for 14 of
these genes (Supplementary Table 3). Blast matches were
obtained against ribosomal sequences, cytoskeletal proteins and
serine/threonine kinases (Supplementary Table 3). The former
are involved in translation, a result that corroborated the tran-
scriptome and GO enrichment results. Cytoskeletal proteins such
as tubulin and actin are structural proteins that are often involved
in the cellular stress response, while serine/threonine kinases are
proteins that play critical roles in signal transduction affecting
cellular processes such as cell division, proliferation and
apoptosis.

Biofilm oligotype analyses. Finally, to compare the responses to
warming in eukaryotes with prokaryotes, the panel biofilm
communities from the different treatments (control, +1 and +2)
were characterised using 16s amplicon sequencing. The results
were subjected to Oligotyping analysis, which uses Shannon
entropy20 to identify positional variation in order to facilitate the
identification of nucleotide positions of interest21. This enables
the detection and classification of distinct subpopulations within
a genus or even within a single species as shown for Gardnerella
vaginalis in humans22. This technique does not rely on reference
databases and clustering approaches to identify operational
taxonomic units, which can often be problematical, as the com-
plete reference genomes of known environmental organisms are

Table 1 PANTHER v13.1 GO-slim overrepresentation tests
for P. stalagmia

Process GO identifier FDR

Biological processes for +2 °C up-regulated transcripts
Translation 0006412 2.02e−13

rRNA metabolic process 0016072 4.05e−06

Protein folding 0006457 8.62e−03

Generation of precursor metabolites
and energy

0006091 4.05e−03

Cellular component biogenesis 0044085 7.04e−10

Cell cycle 0007049 2.90e−04

Organelle organisation 0006996 8.26e−07

Biosynthetic process 0009058 8.95e−06

Molecular function for +2 °C up-regulated transcripts
Structural component of ribosome 0003735 2.57e−42

Translation elongation factor activity 0003746 7.32e−03

Translation initiation factor activity 0003743 4.55e−02

Translation regulator activity 0045182 5.76e−04

Hydrogen ion transmembrane transporter
activity

0015078 3.46e−03

Structural component of cytoskeleton 0005200 2.23e−08

Nucleotide binding 0000166 6.70e−05

mRNA binding 0003729 2.44e−04
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Fig. 2 Box plot showing acute UTLs for the spirobid polychaete R. perrieri.
Central line of each box denotes the median, the top and bottom edges of
the box show the 25% and 75% percentile, with the 10% and 90%
percentiles shown by the upper and lower whiskers; outliers are shown as
circles. Letters denote statistically significant differences between
treatments (a: P= 0.0129; b: P= 0.000; c: P= 0.0200) (Mann–Whitney
pairwise comparisons). Source data are provided as a Source Data file

Table 2 SNPs, genes and GO terms found to correlate with
temperature in P. stalagmia

Analysis results Number

Number of SNPs 13,843
Number of SNPs with Z-score >0.4999 839
Number of SNPs with FDR≤ 0.05 0
Number of genes with ≥5 SNPs 521
Number of genes with FDR≤ 0.05 91
Number of GO terms with FDR≤ 0.05 0
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often lacking in the databases23,24. This is even more pre-
dominant in Antarctic marine biofilms that are under-studied25.
Oligotyping results yielded 16 unique highly abundant oligotypes
(>1% relative abundance, comprising 90% of all reads from a total
of 1,478,129 sequences) across all 14 samples. The abundance of
each highly abundant oligotype varied across the treatments,
although not significantly (PERMANOVA, P= 0.16) (Fig. 3a).
The two most abundant oligotypes were TG (abundance of
12.8–19.9%) and AG (abundance of 5.8–11.5%) (Fig. 3a), but
these abundances were not significantly different between treat-
ments (PERMANOVA, P= 0.2). Cluster analysis using
Bray–Curtis similarity ratios obtained from normalised oligotype
data revealed no biofilm community differences between the +1
and control treatments with both clustering together (Fig. 3b).
The exception was one +1 sample which clustered with the
+2 samples. The +2 community composition was more variable
and different to the +1 and control treatment, with the exception
of the single swab from the +1 community.

In the oligotyping analysis, the minimum relative abundance
threshold removed 350 rare oligotypes. However, given the lack
of any association of the abundant oligotypes with temperature,
further analyses were performed on these rare oligotypes to
identify if they were more frequent with, or associated with, a
particular treatment. These rare oligotypes were similar in the
presence and abundance across treatments. There were two
exceptions that were slightly different across treatments in terms
of percentage abundance. Rare oligotype 1 (GAGGTTAGTCTG
ATCTGGGACCCAACGT) was more abundant in the +2 sam-
ples (ranging from 17.7% to 25.6% of rare oligotypes) than in the
+1 samples (5.9% to 7.7%) and absent in the control treatment.
The abundance of rare oligotype 2 (AGGTTGTTAACAGCT
GAATCAACTG) was similar across treatments except in two of
the +2 samples (17.2% and 25.6% of rare oligotypes) where it was
more abundant than in any of the other samples and treatments
(ranging from 0.2% in one control sample to 13.5% in other
+2 samples).

Assignment of biofilm taxonomy. This was carried out using
BLAST sequence similarity searching. All of the sequence mat-
ches comprised uncultured marine bacteria and were often
associated with biofilm studies. The majority of oligotypes were
assigned to the phylum level, mainly representing Proteobacteria,
with three (GA, AG, TG) matching members of the phylum
Bacteriodetes and a single match to Verrucomicrobia. Only four
oligotypes were assigned to the genus levels (TT, GC, TC, AG) of
Granulosicoccus, Leucothrix, Shewanella and Saprospira, respec-
tively. Antarctic studies are poorly represented in the databases
and this was reflected in the fact that only two oligotypes (TT,
CG) matched sequences from previous Antarctic studies, while an
additional oligotype (TA) showed sequence similarity to data
from an Arctic study (Supplementary Table 4). Rare oligotype 1
revealed closest sequence similarity to Leucothrix spp (accession
number: HG934341), a gammaproteobacteria epiphyte isolated
from a red algae in Chilean waters, while rare oligotype 2 most
closely matched an uncultured marine bacteria of the gamma-
proteobacteria class (accession number: LC171298).

Discussion
It has been extensively documented that Antarctic marine species
(metazoans) are highly stenothermal with extended periods of up
to 8–9 months required for acclimation3. These previous eva-
luations were conducted in the laboratory and the experimental
conditions could not capture natural variability, including com-
plex abiotic and biotic interactions26. However, the sensitivities
identified in the laboratory are re-enforced by this in situ
experiment, with both expression profiling and acute UTL ana-
lyses showing a lack of acclimation in the spirorbids.

The composition and growth performance of Antarctic
encrusting communities on heated settlement panels have pre-
viously been described8. In the initial study, results demonstrated
massive impacts of warming on the encrusting marine assem-
blages8. The most surprising result was the near doubling of
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from panels (controls, +1 and +2)
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growth rates of the encrusting species, in particular the two main
space colonisers the bryozoan Fenestrulina rugula and the spir-
orbid Romanchella perrieri8,27,28. The results were highly species-
specific. On the +1 panels, colonies of F. rugula were over double
the size of those on control panels, while R. perrieri increased in
size by 70%. On the+2 panels, the colonies of F.rugula were larger
than those on control plates, but smaller than those on the +1
panels. In contrast R. perrieri showed similar growth rates at both
warming temperatures, while a second spirorbid P. stalagmia
increased in size by a further 20–30% compared with +1 animals.
In terms of percentage cover and abundance, the presence of R.
perrieri was reduced with warming (7.5%, 2.0%, 1.26%: control,
+1, +2 respectively), whereas that of P. stalagmia was less so
(4.5%, 3.25%, 3.5%). These elevated growth rates were maintained
throughout the Austral summer (December–February). In March,
when the ambient temperature started to fall and the phyto-
plankton bloom decayed (leading to a reduction in food for these
filter feeders) growth rates changed, but again these varied
according to species. The growth rates of F. rugula on the heated
panels declined faster than those on control panels; those of R.
perrieri showed little difference between treatments while growth
rates of P. stalagmia continued to increase8. This experiment was
terminated at the end of the Austral summer. This left open the
question of whether these species had properly acclimated to
chronic warming and built up sufficient energy reserves during the
summer (which was also their period of most rapid growth) to
survive the dearth of their food supply over the long Antarctic
winter and maintain their elevated metabolic rates in
subsequent years.

The 2017 study8 purely focussed on survival, community
composition and growth as area covered, which are not infor-
mative about the acclimation status of the animals. This is par-
ticularly true of the encrusting communities on the panels, which
largely comprised bryozoans and spirorbids. These are small
animals with highly calcareous exoskeletons, which are relatively
robust and will persist long after the death of the animal29. Thus,
expression profiling of a sub-set of individuals is a useful method
for assaying animal health and physiological state at the cellular
level30. In this experiment, the responses of the spirorbid worms
were used as models for the other spatially dominant filter feeding
species on the panels. Expression profiling of the +1 animals
revealed a highly active response to the warmer conditions with
thousands of genes up-regulated compared to control animals.
Relatively little differential expression would be expected between
these two treatments, if acclimation had occurred, with the
physiology of the +1 animals being re-set to that of the controls.
Thus, the +1 animals were still unable to acclimate their phy-
siologies to the warmer conditions, even after 18 months.

At the higher temperature, analysis of the annotations asso-
ciated with the up-regulated transcripts in the +2 animals
revealed indications of cell stress and continued resistance to the
warmer conditions. Almost one-third of the transcripts com-
prised ribosomal genes. Similarly, there was up-regulation of
transcripts putatively involved in translation (e.g., translation
elongation factors), protein degradation (e.g., ubiquitin and
proteosome transcripts), cellular respiration (e.g., ATP synthase)
and cell division (e.g., G2/mitotic-specific cyclin), indicating a
substantial requirement for the enhanced generation of proteins,
protein turnover and cell renewal in the warmer conditions
(Supplementary Tables 2 and 3). Critically a number of cytos-
keletal proteins (e.g., actin, tubulin), proteins were also up-
regulated. These proteins are increasingly being shown to play
roles as stress sensors in marine invertebrates31,32 and there was
also evidence of activation of the classical cellular stress
response33. This was represented by the presence of chaperone
transcripts for the 70 and 90 kDa heat-shock proteins (HSP70s

and HSP90s), T-complex proteins and antioxidants such as
aldehyde dehydrogenase. This transcriptional profile indicates
that the animals were exhibiting cellular stress, having serious
difficulties with acclimating to the new conditions and potentially
at, or close to, a tipping point in their abilities to survive34. These
expression profiles are incompatible with those expected of nat-
ural senescence, which would be typified by a general down-
regulation and would not invoke the cellular stress response.
Antarctic spirorbids can live 4–5 years (David K. A. Barnes,
personal communication 2019), which is much longer than
spirorbids in other regions of the planet. Spirorbids on control
panels retrieved after 2.5 years were still alive and reactive (L. S.
Peck, personal communication 2019). Thus, even with potentially
accelerated ageing in the warm conditions, the timescale of these
experiments was well within the natural life span of these animals.
While the temperature tolerances of the spirorbids in the different
treatments could be affected by body size, all of the animals tested
were mature adults. Previous work indicates that there is likely to
be a very small effect of body size in mature adults35 and that this
would not influence the results. The expression profiles indicate
that while the spirorbids can grow rapidly under warming, they
cannot sustain this rate indefinitely. This rapid growth may be a
particular issue for filter feeders, where they have access to
abundant food during the short Austral summer, but then have to
maintain these enhanced metabolisms during the long winter,
when phytoplankton are largely absent.

The molecular data were supported by the acute UTL trials,
which were conducted on a closely related spirorbid species
(Fig. 2). Unfortunately because of the limited numbers of P. sta-
lagmia individuals available, all the acclimation experiments could
not be carried out on the same species. However, R. perrieri is
closely related to P. stalagmia and fills the same ecological niche
within this community. If the spirorbids had acclimated at the
whole animal level, this would have been shown as an increase in
their UTL19,35,36. This did not occur and all animals on the
warmer panels were in a permanent state of resistance and/or
decline depending on the individual and temperature. The fact
that this was still in process after 18 months exposure was prob-
ably a reflection of the low-energy lifestyle of these species and
their very slowed metabolisms3. This highlights a potentially cri-
tical factor in understanding Antarctic marine species responses to
climate change, that of extended decline. Such a process can only
be evaluated using extremely long evaluations combined with
molecular techniques, as persistence with decline may not be
accompanied by outward morphological or even physiological
signs in such long-lived, relatively inactive cold-adapted species37.

Thus, even a +1–2 °C increase in the environment of these
Antarctic encrusting species significantly impacts on cellular
homoeostasis, a situation that is likely not sustainable long term,
especially with regard to the ability of these animals to maintain
enhanced growth rates and sufficient seasonal food stores to
ensure longevity. This is in contrast to the previously longest
exposure of 17 months to +2 °C38. In that study the sea urchin
Sterechinus neumayeri was exposed to the combined stresses of
temperature and low pH in laboratory conditions and showed no
significant physiological effects. In fact, reproductive capacity
improved with time38. However, S. neumayeri is a scavenger/
detritivore and was fed constantly during the course of the
experiment. That experiment further kept animals at constant
temperatures, as do nearly all laboratory studies, and lacked the
effects of winter seasonality. Our results suggest that the various
feeding guilds may respond differently to climate change
depending on access to food and/or that winter conditions and
seasonality may have a role to play in species persistence.

Given the lack of acclimation in these animals, it was of interest
to identify if there had been any differential survival of genotypes
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in relation to temperature. Bayenv2 was chosen as the analysis
tool because it can identify associations between allele frequencies
and environmental variables while accounting for sampling error
in pooled data39. Small but significant allele frequency differences
were observed in a total of 91 genes (0.14% of the total number of
transcripts obtained in this study) (Supplementary Table 3). Blast
searching and GO analysis of individual genes produced few
annotations, but some transcripts had putative functions asso-
ciated with translation, the cytoskeleton and serine/threonine
kinases (Supplementary Table 3), which linked directly with the
major transcriptome results above. Overall, there was little evi-
dence for differential survival of genotypes within the spirorbid
population. These molecular and UTL results suggest a lack of
physiological and genetic flexibility in the encrusting species to
warming. The panels were clean when they were put into the
water and then warmed up, during which colonisation took place.
Hence, phenotypic plasticity could impact several stages, such as
post-settlement development, early juvenile development and
adult maturity. It is not possible under this experimental design to
determine where phenotypic plasticity was constrained, but the
overall result was a lack of physiological flexibility in the mature
population.

To provide a contrast to the long-lived metazoan species, the
bacterial biofilm communities (with very short generation times)
were also evaluated on the heated panels. Biofilms are critical
components of most marine systems and provide biochemical
cues that can significantly impact overall community composi-
tion18. Previous molecular analyses of biofilms cultured under
different environmental conditions have shown dramatic altera-
tions in community composition40,41. However, these experi-
ments used short exposures of between 7 and 18 days and
relatively high temperature increases (+3 and +5 and 6, 12 and
18 °C)40,41 that have little relevance for climate change responses.
Thus, they may not represent mature biofilm communities and
the thermal responses tested were to conditions well in excess of
IPCC medium-term scenarios9. The data shown here represent
more realistic predictions of the future responses of biofilms to
climate change. Even though +1 and +2 °C above the ambient
freezing temperatures of the Southern Ocean represented pro-
portionally large increases in temperature, when compared with
the same temperature increases applied to temperate or tropical
systems, there were no significant changes in bacterial biofilm
community composition with temperature as revealed by
amplicon sequencing. This is in contrast to differences observed
in the metazoan community assemblage at 9 months8. This
indicates a potentially large flexibility within bacterial physiolo-
gies to cope with changed conditions, but may also be due, at least
in part, to their very short-generation times and therefore
potential for adaptation and evolution in much shorter time
periods.

Similar to the transcriptome analyses, there was limited
annotation of the bacterial species. In this study, many of the
oligotypes produced highest sequence similarities against uncul-
tured marine bacteria (Fig. 3) of the Gammaproteobacteria class,
which was similar to the results obtained from benthic Antarctic
marine biofilms around McMurdo station25. However, improved
sampling and annotation since the 2006 study25 did result in
reassuringly high sequence similarities with two Antarctic and
one Arctic metabarcoding study42–44. In the Antarctic, there is a
lack of knowledge about most bacterial biofilms and their
response to environment conditions. Of the few studies per-
formed, results have indicated that Antarctic marine bacteria can
thrive in wider temperature ranges when compared with the
invertebrates. For example, a Pseudoalteromonas species from the
South Shetlands demonstrated growth over a temperature range
of −2 to 18 °C, while a Cellulophaga species from the same area

survived up to 41 °C45, which underpins the findings of bacterial
thermal flexibility identified here. This finding also consolidates
the hypothesis of greater resilience and adaptability of prokaryotic
communities under future climate change compared with the
high thermal sensitivity of the Metazoa. Thus, ecosystem
responses to future climate change are likely to be far more
complex than previously anticipated.

Methods
Panel sample collection. Samples were taken for molecular analyses from heated
(+1 and +2 °C above ambient sea water temperatures) and non-heated (control)
panels after 18 months immersion at 15 m depth near Rothera Research Station,
Adelaide Island, Antarctic Peninsula (67°4′07″S, 68°07′30″W). These treatments
are referred to as control +1 and +2 in the following methods. At the start of the
18-month deployments, all panels were brand new, placed on site and then gra-
dually warmed up to the relevant temperature for colonisation in situ. Three sites
around Rothera were used for the original study, with panels deployed in South
Cove, Hangar Cove and North Cove on concrete substrata. At each site, four heated
panels for each temperature (total of 12 panels per site) were laid in a random
design in batches of four with position generated by a random number generator
and this design was random with regard to both the position and the concrete
block. Because of iceberg impact damage, one set of panels was retrieved from
South Cove after 9 months and held in the Rothera flow-through aquarium. The
water intake for the aquarium is not filtered; the inlet is at 7M and only boulder
covered to protect from ice. Therefore, the animals in the aquarium experienced
the same sea water, food availability and environmental conditions as the original
site for a further 9 months (South Cove panels). It should furthermore be noted
that most of this final 9-month period took place during winter when phyto-
plankton levels are extremely low. Another set of panels (North Cove panels)
remained in the sea for the whole 18-month period. It was not possible to use the
Hangar Cove panels in this study, as predation by urchins had dramatically altered
the community composition of the panels at this site. Experimental organisms were
non-regulated so ethical approval was not required. After a preliminary environ-
mental assessment (PEA #14-11) collections were made within the Antarctic Act,
permit number S7-10/2015, as granted under section 7 of the Antarctic Act 1994.

Transcriptome methods. Protolaeospira stalagmia were dissected from their cal-
cified skeletons, snap frozen in liquid nitrogen and stored at −80 °C prior to RNA
extraction. Total RNA was extracted from dissected Protolaeospira stalagmia (n=
6 per panel, per treatment: 3 each of control, +1, +2; total of 54 individuals) using
ReliaPrep TM RNA Miniprep Systems (Promega) according to the manufacturer’s
instructions. RNA samples were assessed for concentration and quality using a
NanoDrop ND-100 Spectrometer (NanoDrop Technologies) and an Agilent 2200
Tapestation (Agilent Technologies). RNA samples (n= 6 per panel, per treatment)
were pooled to obtain a total of three replicates per treatment (control, +1, +2)
producing a final total of nine samples of 150 ng RNA for each sample.

To obtain sufficient RNA for library preparation each RNA pool was cDNA was
amplified using the Ovation RNA-Seq system v2 kit (NuGEN) according to the
manufacturer’s instructions. Library preparation and sequencing was carried out by
Edinburgh Genomics (Edinburgh, UK). For each sample, cDNA was converted to a
sequencing library using the TruSeq standed mRNA-Seq library for NeoPrep
(Ilumina) and barcoded libraries were pooled and sequenced on an Illumina HiSeq
4000 using 125 base paired-end reads to generate 50 million raw reads per sample.

Reads were trimmed using Cutadapt (version 1.9 dev2)46 for quality at the 3′
end using a quality threshold of 30 and for adapter sequences of the TruSeq
Nano DNA kit (AGATCGGAAGAGC) and a minimum length of 35 bp. rRNA
reads were removed using sortMeRNA (version 2.1)47. The filtered reads were
assembled using Trinity (version 2.5)48, which produced over five million
sequences. Transcripts were quantified using the RSEM method49 and any
sequences with TPM (transcripts per million) <1 and isopct (minimal level of
dominant isoform expression) <1 were discarded. In order to further reduce any
redundancy, transcripts with 95% similarity were clustered using CD-HIT-EST
(version 4.7)50,51. These contigs were annotated using Trinotate (version 3.1.1)48.
As part of this pipeline, peptide sequences were predicted using transdecoder,
which were further searched against the SwissProt non-redundant database using
BLASTP52. BLASTX52 search was also performed with the transcript sequences as
the query and the SwissProt non-redudant database as the target. The Pfam
databases53 were used to predict protein domains using HMMER54. SignalP
(version 4.1)55 was used to predict the presence of signal peptides, and TMHMM56

was used to predict transmembrane helices within the predicted peptide sequences.
The trimmed reads free from rRNA were aligned against the reference

transcriptome using bwa mem (version 0.7.13-r1126)57 with parameter ‘-M’.
Duplicates were marked using Picard tools (version 2.8.1) (http://broadinstitute.
github.io/picard). Read counts by transcript were generated using Salmon (version
0.9.1)58. The transcriptome assembly produced earlier was used to produce a quasi-
mapping index. The quantification step was carried out with parameter ‘-1 U’ to
specify an unstranded library and bias correction parameters –seqBias, --gcBias
and –posBias58. Transcripts were filtered on counts per million (CPM) to remove
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transcripts consisting of near-zero counts and to avoid artefacts due to library
depth. Transcripts were required to have a CPM >0.3 in at least three samples,
corresponding to the smallest sample group as defined by group, once any samples
were removed. Reads were normalised using the weighted trimmed mean of M-
values method59. ‘TMM’ was passed as the method to the calcNormFactors method
of edgeR. edgeR (version 3.16.5)59 was used to perform differential expression
analysis. Fold changes were estimated as per the default behaviour of edgeR.
Statistical assessment of differential expression was carried out with the quasi-
likehood (QL) F-test using the following contrasts: Control versus 1 °C, controls
versus 2 °C and 1 °C versus 2 °C. To adjust for confounding covariates such as
batch effects, a blocking factor was incorporated as part of the additive model.
Differential gene set analysis was carried out using ROAST60 from the Limma
package version 3.30.13 (ref. 61) of Bioconductor using the same models and
contrasts as used in the differential transcript analysis expression. A PCA analysis
was undertaken on normalised and filtered expression data to explore observed
patterns with respect to experimental factors. The cumulative proportion of
variance associated with each factor was used to study the level of structure in the
data, while associations between continuous value ranges in principal components
and categorical factors was assessed with an ANOVA test. The following Gene
Ontology (GO) gene sets were used: GO Molecular Function, GO Cellular
Component and GO Biological Process62. For GO enrichment analyses, the GO
annotations were extracted from the Trans-D_trinotate_annotation_report.txt.
ROAST was executed using 9999 rotations. GO terms that were not associated with
at least five genes were excluded from the analysis. All transcripts in the contrasts
of interest with either a BLASTX and/or a BLASTP annotation were re-searched
against the human SwissProt database63. A list of unique human protein identifiers
was then entered into both the STRING64 and PANTHER65 databases to evaluate
enrichment of functional groups.

Upper thermal limit experiments on Romanchella perrieri. UTLs were measured
in R. perrieri on heated panels from two sites to evaluate whole animal acclimation.
The sites were North Cove and South Cove, described earlier. The animals were
taken from the same panels in South Cove that were used as a source for P.
stalagmia for the transcriptome experiments. One heated settlement panel was
used for each of the UTL experiments at each temperature, for each site (total of 6
panels), with 25 animals evaluated per panel (total of 150 animals in the experi-
ment). Heated and non-heated panels (one each of control, +1, +2) from the
South Cove/aquarium and North Cove sites colonised by R. perrieri were trans-
ferred to a 60-L jacketed tank with aerated sea water at the same temperature as the
ambient sea water (0 °C) and connected to a thermocirculator (Grant Instruments
Ltd, Cambridge, UK). The temperature was raised at 1 °C h−1 with the temperature
limit of each animal noted when they no longer responded to tactile stimuli35, i.e.,
did not retract into their exoskeleton, when touched with a dissecting needle seeker.
UTL data were non-normal, even after transformations, so non-parametric sta-
tistical tests were used to analyse the data. A Mann–Whitney test verified that both
the South Cove and North Cove data could be combined (P= 0.0896). A
Kruskal–Wallis test was used to investigate if there was an effect of temperature on
UTL compared with panel treatment and Mann–Whitney tests were subsequently
used on these data to identify significance between panel treatments.

Population genetic analyses. Transcripts generated for the expression analyses
were used in this analysis. Default parameters were used for all programmes unless
specified.

Supertranscripts were generated from the assembled transcriptome using the
script ‘Trinity_gene_splice_modeler.py’ provided with Trinity (version 2.5.0)48.
Trimmed and filtered reads were aligned to the supercontigs using STAR (version
2.5.2b)66. Potential PCR duplicates were marked using Picard tools
MarkDuplicates. In accordance with GATK67 best practices, reads with split
mappings were split into separate reads in the BAM files using GATK (version 3.7)
tool SplitNCigarReads with parameters: -rf ReassignOneMappingQuality -RMQF
255 -RMQT 60 -U ALLOW_N_CIGAR_READS. Local realignment around indels
was performed using GATK tools RealignerTargetCreator and IndelRealigner. A
single pileup file was generated from the nine BAM files using samtools68 mpileup
(version 1.3) with the parameters ‘-B -q 20-Q30’. These parameters result in bases
with a base quality phred score of less than 30, and an alignment quality of less
than 20, being discarded. A single ‘.sync’ file was generated from the pileup file
using ‘mpileup2sync.jar’ from PoPoolation2 (ref. 69) (version 1.201).

Bayenv2 (ref. 39) was used to measure the extent to which the allele frequencies
of each SNP correlate with temperature. Bayenv2 is designed to take into account
the extra level of sampling error arising from pooled data from a small number of
individuals. In accordance with recommendations for running Bayenv2, a set of
SNPs were selected to generate a matrix of covariance between samples. Only SNPs
covered by at least five reads in at least six samples, and with a minor allele
supported by at least five reads in total across all samples, were selected, and only
one SNP per transcript was included. The covariance matrix was generated using
Bayenv2 with the following parameters: -p 9 -k 200000, and specifying specifies
four diploid individuals per sample with the ‘-s’ flag. Z-scores for each SNP were
calculated using Bayenv2 with the parameters: -p 9 k 200000 -r 8372 -n 1 -e
standard_env.txt -x -m pool_matrix.txt –t. Where file ‘pool_matrix.txt’ contains

the covariance matrix produced in the previous step, and ‘standard_env.txt’
contains standardised measures of temperature (in degrees centigrade).

Due to the various sources of noise in this dataset, we wanted to filter out SNPs
that were most likely affected by sampling error. Before attempting to calculate
FDRs or perform GSEA, the SNPs were filtered to remove low coverage SNPs.
Specifically, we removed SNPs that were not covered by at least five reads in each
sample, or which had a minor allele supported by less than 15 reads in total across
the nine samples. Because Bayenv2 does not produce P values, we estimated the
statistical significance of our results by reference to a null distribution of Z-scores.
This was created by randomly permuting the labels in file ‘standard_env.txt’ 100
times and recalculating the Z-scores for each SNP. The null distribution of Z-scores
allowed us to calculate the probability of a high Z-score arising by chance. The false
discovery rate (FDR) for each SNP was then calculated as follows: FDR= ip/n,
where i= number of SNPs in the dataset that achieved an equal or greater Z-score,
n= total number of SNPs in all null permutations that achieved an equal or greater
than Z-score, and p= number of permutations.

A score for each supertranscript was calculated by taking the mean Z-score of
all SNPs from that supertranscript. FDRs for each supertranscript with more than
five SNPs that passed the filter were calculated from the null distribution as follows:
FDR= ip/n, where i= number of supertranscripts in dataset that achieved an equal
or greater mean Z-score, n= total number of supertranscripts with at least five
SNPs passing the filter in all null permutations that achieved an equal or greater
mean Z-score, and p= number of permutations. For each SNP, the minor allele
frequency (MAF) was calculated for each of the three groups of samples. The MAF
was calculated for each individual sample as follows: MAF=m/t, where m=
number of reads supporting minor allele and t= total number of reads covering
site. The effective allele number was also calculated for each sample at each SNP,
using the formula e= ((nc)−1)/(n+c). MAF was calculated for each of the three
groups by taking the average MAF for each sample weighted by the effective allele
number for that sample. This allows varying the sampling error arising from the
varying depths of coverage between samples to be accounted for.

Biofilm methods. Panels from North Cove were brought up to the surface by
SCUBA divers and placed in a 10 L tank on the boat with sea water at the same
temperature as the ambient sea water (~0 °C). Biofilm swabs were taken from the
panels while on the boat and stored in 100% ethanol for subsequent analyses. Four
to five biofilm swabs were taken per treatment (control, +1, +2). Total genomic
DNA was extracted from the biofilm swabs using the PowerBiofilm DNA isolation
kit (MO BIO Laboratories, Inc.) following the manufacturer’s instructions. A blank
swab was also included and extracted as a no-template control. DNA samples were
assessed for concentration and quality using a NanoDrop ND-100 Spectrometer
(NanoDrop Technologies) and an Agilent 2200 Tapestation (Agilent Technolo-
gies). To enable compatibility with the Illumina 16S Metagenomic Sequencing
Protocol, the hypervariable V4 region of the 16S rRNA genes was PCR-amplified
using the 16S Amplicon PCR forward primer (5′-TCGTCGGCAGCGTCAGATG
TGTATAAGAGACAGCCTACGGGNGGCWGCAG) and the 16S Amplicon
reverse PCR primer (5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGG
ACTACHVGGGTATCTAATCC). PCR reactions were carried out using the
KAPA Hifi HotStart ReadyMix according to manufacturer’s instructions. Ampli-
fications were carried out in an AlphaCycler (PCRmax) under the following con-
ditions: 95 °C for 30 s, followed by 25 cycles of 95 °C for 30 s, 55 °C for 30 s and
72 °C for 30 s. A final elongation step at 72 °C for 5 min was performed. Resulting
PCR products were checked by standard agarose gel (1.5%) electrophoresis and
purified using the QIAquick PCR Purification kit (Qiagen) following the manu-
facturer’s instructions.

Library preparation and sequencing was carried out by the Department of
Biochemistry at the University of Cambridge. For each sample (n= 4–5 swabs per
sample per treatment: control, +1, +2 and control) DNA was converted in to a
sequencing library using the 16S Metagenomic Sequencing Library preparation kit
(DNA input 1 ug, 8 PCR cycles), and sequenced in triplicate (39 samples total) on
an Illumina MiSeq using 300 base paired-end reads, to generate 44–50 million raw
reads per pool.

Oligotyping analysis was used22 to define biofilm community composition
differences in heated and non-heated settlement panels. Adapters were trimmed
from the raw reads using trim_galore software (https://www.bioinformatics.
babraham.ac.uk/projects/trim_galore/). Reads were merged using mothur v.1.35.1
(ref. 70), MiSeq SOP site accessed on the 18/08/17). Entropy and oligotyping
analyses were conducted according to ref. 21. Sequences were not aligned to a
reference alignment since length read varied due to partially overlapping reads.
Hence the 0-pad-with-gaps script from the Minimum entropy decomposition
(MED) pipeline 1.2 (ref. 71) was run on the reads. All analyses were carried out
using default parameters unless otherwise specified. MED analysis was performed
using the MED pipeline version 1.2. The minimum substantive abundance
criterion (M) was set to 50 to filter noise in the data. After the initial round of
oligotyping, high entropy positions were chosen (-C option). To minimise the
impact of sequences errors, an oligotype was required to be represented in at least
1000 reads (-M option). Moreover, rare oligotypes present in less than five samples
were discarded (-s option). These parameters led to 1,478,129 sequences left in the
database. Oligotypes were searched using blastn against the ENA sequence
database using NCBI Blast +via the EBI web services72. Further oligotyping
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analysis was performed on the rare oligotypes removed from the original analysis
to look at differences in microbial diversity in the rarer species between treatments
(control, +1, +2). Rare oligotypes were explored by selecting the parameter M
(minimum substantive abundance) and by using the oligotype command in the
pipeline to scrutinise the data. The minimum substantive abundance criterion was
set to 50 (-M 50) to filter noise in the data. After the initial round of oligotyping,
nucleotide positions (9, 13, 120, 122 and 130) were carefully selected to explore the
rare oligotypes. Two more rounds of oligotyping were performed with the
minimum substantive abundance set to 50 and by further selecting nucleotide
positions (9, 13, 26, 80, 120, 122 and 130). Those rare oligotypes enriched by PCR
errors did not converge. Individual oligotype sequences were searched against
reference sequences in the NCBI’s nr database using BLAST73.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The EMBRIC configurator data management service [https://doi.org/10.7490/
f1000research.1116538.1] was used for advice on data coordination and standards. The
transcriptome data are available from the European Nucleotide Archive with the ENA
accession number: PRJEB27537. The biofilm data are also available from the European
Nucleotide Archive with the ENA accession number: PRJEB30562. The source data
underlying Figs. 1, 2, and 3a are provided as a Source Data file. The data underlying Fig. 2
are also available from the UK Polar Data Centre, Natural Environment Research
Council, UK Research & Innovation: https://doi.org/10.5285/93eaaf9e-0624-441b-81f0-
0438b844f6bb.
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