92 research outputs found

    Shelled pteropods in peril: Assessing vulnerability in a high CO2 ocean

    Get PDF
    The impact of anthropogenic ocean acidification (OA) on marine ecosystems is a vital concern facing marine scientists and managers of ocean resources. Euthecosomatous pteropods (holoplanktonic gastropods) represent an excellent sentinel for indicating exposure to anthropogenic OA because of the sensitivity of their aragonite shells to the OA conditions less favorable for calcification. However, an integration of observations, experiments and modelling efforts is needed to make accurate predictions of how these organisms will respond to future changes to their environment. Our understanding of the underlying organismal biology and life history is far from complete and must be improved if we are to comprehend fully the responses of these organisms to the multitude of stressors in their environment beyond OA. This review considers the present state of research and understanding of euthecosomatous pteropod biology and ecology of these organisms and considers promising new laboratory methods, advances in instrumentation (such as molecular, trace elements, stable isotopes, palaeobiology alongside autonomous sampling platforms, CT scanning and high-quality video recording) and novel field-based approaches (i.e. studies of upwelling and CO2 vent regions) that may allow us to improve our predictive capacity of their vulnerability and/or resilience. In addition to playing a critical ecological and biogeochemical role, pteropods can offer a significant value as an early-indicator of anthropogenic OA. This role as a sentinel species should be developed further to consolidate their potential use within marine environmental management policy making

    Remote, but Not Isolated - Microplastics in the Sub-surface Waters of the Canadian Arctic Archipelago

    Get PDF
    This is the final version. Available on open access from Frontiers Media via the DOI in this recordData Availability Statement: The original contributions presented in the study are included in the article/Supplementary Material; further inquiries can be directed to the corresponding author/s.As the remote Canadian Arctic Archipelago (CAA) becomes increasingly connected to the rest of the world, there is an impetus to monitor the possible impact of this connectivity. The potential for increases in localised sources of plastic pollution resulting from the increasing navigability of the remote north has yet to be explored. Here we investigate microplastic samples which were collected aboard the Canadian Coast Guard Ship (CCGS) Amundsen in the summer of 2018 using the underway pump and a filtration system with Fourier transform infrared analysis. We investigate the character, abundance, and distribution of microplastic particles and fibres in the sub-surface waters across the Canadian Arctic and add to the limited dataset on plastic pollution in this region. We find that there are low concentrations of microplastics ranging from 0 to 0.282 n L–1 (average 0.031 ± 0.017 n L–1), comprising 71% polyester and acrylics. We investigate the size distribution of retained particles and fibres on three different filter mesh sizes connected to the underway pump (300, 100, and 50 μm) and find that a 300 μm mesh and a 100 μm mesh retain only 6 and 56%, respectively, of the total particles and fibres. We explore the role of shipping as a potential source of textile fibres and we suggest that future monitoring of plastics in the Canadian Arctic should use the current shipping fleet to monitor its own plastic footprint, utilising the underway pump and mesh sizes < 100 μm.Natural Environment Research Council (NERC)UK-Canada Arctic Science Bursary Programm

    Evolution of South Atlantic density and chemical stratification across the last deglaciation

    Get PDF
    This is the author accepted manuscript. The final version is available from the National Academy of Sciences via the DOI in this recordExplanations of the glacial-interglacial variations in atmospheric pCO2invoke a significant role for the deep ocean in the storage of CO2. Deep-ocean density stratification has been proposed as a mechanism to promote the storage of CO2in the deep ocean during glacial times. A wealth of proxy data supports the presence of a "chemical divide" between intermediate and deep water in the glacial Atlantic Ocean, which indirectly points to an increase in deep-ocean density stratification. However, direct observational evidence of changes in the primary controls of ocean density stratification, i.e., temperature and salinity, remain scarce. Here, we use Mg/Ca-derived seawater temperature and salinity estimates determined from temperature-corrected δ18O measurements on the benthic foraminifer Uvigerina spp. from deep and intermediate water-depth marine sediment cores to reconstruct the changes in density of sub-Antarctic South Atlantic water masses over the last deglaciation (i.e., 22-2 ka before present). We find that a major breakdown in the physical density stratification significantly lags the breakdown of the deep-intermediate chemical divide, as indicated by the chemical tracers of benthic foraminifer δ13C and foraminifer/coral14C. Our results indicate that chemical destratification likely resulted in the first rise in atmospheric pCO2, whereas the density destratification of the deep South Atlantic lags the second rise in atmospheric pCO2during the late deglacial period. Our findings emphasize that the physical and chemical destratification of the ocean are not as tightly coupled as generally assumed.J.R. was funded jointly by the British Geological Survey/British Antarctic Survey (Natural Environment Research Council) and the University of Cambridge. J.G. was funded by the Gates Cambridge Trust. L.C.S. acknowledges support from the Royal Society and NERC Grant NE/J010545/1. C.W. acknowledges support from the European Research Council Grant ACCLIMATE 339108. This work was funded (in part) by the European Research Council (ERC Grant 2010-NEWLOG ADG-267931 HE). N.V.R. acknowledges support from EU RTN NICE (36127)

    Deglacial changes in flow and frontal structure through the Drake Passage

    Get PDF
    © 2017 Elsevier B.V. The oceanic gateways of the Drake Passage and the Agulhas Current are critical locations for the inflow of intermediate-depth water masses to the Atlantic, which contribute to the shallow return flow that balances the export of deep water from the North Atlantic. The thermohaline properties of northward flowing intermediate water are ultimately determined by the inflow of water through oceanic gateways. Here, we focus on the less well-studied “Cold Water Route” through the Drake Passage. We present millennially-resolved bottom current flow speed and sea surface temperature records downstream of the Drake Passage spanning the last 25,000 yr. We find that prior to 15 ka, bottom current flow speeds at sites in the Drake Passage region were dissimilar and there was a marked anti-phasing between sea surface temperatures at sites upstream and downstream of the Drake Passage. After 14 ka, we observe a remarkable convergence of flow speeds coupled with a sea surface temperature phase change at sites upstream and downstream of Drake Passage. We interpret this convergence as evidence for a significant southward shift of the sub-Antarctic Front from a position north of Drake Passage. This southward shift increased the through-flow of water from the Pacific, likely reducing the density of Atlantic Intermediate Water. The timing of the southward shift in the sub-Antarctic Front is synchronous with a major re-invigoration of Atlantic Meridional Overturning Circulation, with which, we argue, it may be linked

    Scoping intergenerational effects of nanoplastic on the lipid reserves of Antarctic krill embryos

    Get PDF
    Antarctic krill (Euphausia superba) plays a central role in the Antarctic marine food web and biogeochemical cycles and has been identified as a species that is potentially vulnerable to plastic pollution. While plastic pollution has been acknowledged as a potential threat to Southern Ocean marine ecosystems, the effect of nanoplastics (<1000 nm) is poorly understood. Deleterious impacts of nanoplastic are predicted to be higher than that of larger plastics, due to their small size which enables their permeation of cell membranes and potentially provokes toxicity. Here, we investigated the intergenerational impact of exposing Antarctic krill to nanoplastics. We focused on whether embryonic energy resources were affected when gravid female krill were exposed to nanoplastic by determining lipid and fatty acid compositions of embryos produced in incubation. Embryos were collected from females who had spawned under three different exposure treatments (control, nanoplastic, nanoplastic + algae). Embryos collected from each maternal treatment were incubated for a further 6 days under three nanoplastic exposure treatments (control, low concentration nanoplastic, and high concentration nanoplastic). Nanoplastic additions to seawater did not impact lipid metabolism (total lipid or fatty acid composition) across the maternal or direct embryo treatments, and no interactive effects were observed. The provision of a food source during maternal exposure to nanoplastic had a positive effect on key fatty acids identified as important during embryogenesis, including higher total polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) when compared to the control and nanoplastic treatments. Whilst the short exposure time was ample for lipids from maternally digested algae to be incorporated into embryos, we discuss why the nanoplastic-fatty acid relationship may be more complex. Our study is the first to scope intergeneration effects of nanoplastic on Antarctic krill lipid and fatty acid reserves. From this, we suggest directions for future research including long term exposures, multi-stressor scenarios and exploring other critical energy reserves such as proteins

    Modulation of the surface proteome through multiple ubiquitylation pathways in African Trypanosomes

    Get PDF
    Recently we identified multiple suramin-sensitivity genes with a genome wide screen in Trypanosoma brucei that includes the invariant surface glycoprotein ISG75, the adaptin-1 (AP-1) complex and two deubiquitylating enzymes (DUBs) orthologous to ScUbp15/HsHAUSP1 and pVHL-interacting DUB1 (type I), designated TbUsp7 and TbVdu1, respectively. Here we have examined the roles of these genes in trafficking of ISG75, which appears key to suramin uptake. We found that, while AP-1 does not influence ISG75 abundance, knockdown of TbUsp7 or TbVdu1 leads to reduced ISG75 abundance. Silencing TbVdu1 also reduced ISG65 abundance. TbVdu1 is a component of an evolutionarily conserved ubiquitylation switch and responsible for rapid receptor modulation, suggesting similar regulation of ISGs in T. brucei. Unexpectedly, TbUsp7 knockdown also blocked endocytosis. To integrate these observations we analysed the impact of TbUsp7 and TbVdu1 knockdown on the global proteome using SILAC. For TbVdu1, ISG65 and ISG75 are the only significantly modulated proteins, but for TbUsp7 a cohort of integral membrane proteins, including the acid phosphatase MBAP1, that is required for endocytosis, and additional ISG-related proteins are down-regulated. Furthermore, we find increased expression of the ESAG6/7 transferrin receptor and ESAG5, likely resulting from decreased endocytic activity. Therefore, multiple ubiquitylation pathways, with a complex interplay with trafficking pathways, control surface proteome expression in trypanosomes

    Expedition 382 Preliminary Report: Iceberg Alley and Subantarctic Ice and Ocean Dynamics

    Get PDF
    This is the final version. Available from International Ocean Discovery Program via the DOI in this record. International Ocean Discovery Program (IODP) Expedition 382, Iceberg Alley and Subantarctic Ice and Ocean Dynamics, investigated the long-term climate history of Antarctica, seeking to understand how polar ice sheets responded to changes in insolation and atmospheric CO2 in the past and how ice sheet evolution influenced global sea level and vice versa. Five sites (U1534–U1538) were drilled east of the Drake Passage: two sites at 53.2°S at the northern edge of the Scotia Sea and three sites at 57.4°–59.4°S in the southern Scotia Sea. We recovered continuously deposited late Neogene sediment to reconstruct the past history and variability in Antarctic Ice Sheet (AIS) mass loss and associated changes in oceanic and atmospheric circulation. The sites from the southern Scotia Sea (Sites U1536–U1538) will be used to study the Neogene flux of icebergs through “Iceberg Alley,” the main pathway along which icebergs calved from the mar- gin of the AIS travel as they move equatorward into the warmer wa- ters of the Antarctic Circumpolar Current (ACC). In particular, sediments from this area will allow us to assess the magnitude of iceberg flux during key times of AIS evolution, including the following: • The middle Miocene glacial intensification of the East Antarctic Ice Sheet, • The mid-Pliocene warm period, • The late Pliocene glacial expansion of the West Antarctic Ice Sheet, • The mid-Pleistocene transition (MPT), and • The “warm interglacials” and glacial terminations of the last 800 ky. We will use the geochemical provenance of iceberg-rafted detritus and other glacially eroded material to determine regional sources of AIS mass loss. We will also address interhemispheric phasing of ice sheet growth and decay, study the distribution and history of land-based versus marine-based ice sheets around the continent over time, and explore the links between AIS variability and global sea level. By comparing north–south variations across the Scotia Sea be- tween the Pirie Basin (Site U1538) and the Dove Basin (Sites U1536 and U1537), Expedition 382 will also deliver critical information on how climate changes in the Southern Ocean affect ocean circulation through the Drake Passage, meridional overturning in the region, water mass production, ocean–atmosphere CO2 transfer by wind- induced upwelling, sea ice variability, bottom water outflow from the Weddell Sea, Antarctic weathering inputs, and changes in oceanic and atmospheric fronts in the vicinity of the ACC. Comparing changes in dust proxy records between the Scotia Sea and Antarctic ice cores will also provide a detailed reconstruction of changes in the Southern Hemisphere westerlies on millennial and orbital timescales for the last 800 ky. Extending the ocean dust record beyond the last 800 ky will help to evaluate dust-climate couplings since the Pliocene, the potential role of dust in iron fertilization and atmospheric CO2 drawdown during glacials, and whether dust input to Antarctica played a role in the MPT. The principal scientific objective of Subantarctic Front Sites U1534 and U1535 at the northern limit of the Scotia Sea is to recon- struct and understand how ocean circulation and intermediate water formation responds to changes in climate with a special focus on the connectivity between the Atlantic and Pacific basins, the “cold water route.” The Subantarctic Front contourite drift, deposited between 400 and 2000 m water depth on the northern flank of an east–west trending trough off the Chilean continental shelf, is ideally situated to monitor millennial- to orbital-scale variability in the export of Antarctic Intermediate Water beneath the Subantarctic Front. During Expedition 382, we recovered continuously deposited sediments from this drift spanning the late Pleistocene (from ~0.78 Ma to recent) and from the late Pliocene (~3.1–2.6 Ma). These sites are expected to yield a wide array of paleoceanographic records that can be used to interpret past changes in the density structure of the Atlantic sector of the Southern Ocean, track migrations of the Sub- antarctic Front, and give insights into the role and evolution of the cold water route over significant climate episodes, including the following: • The most recent warm interglacials of the late Pleistocene and • The intensification of Northern Hemisphere glaciation.National Science Foundatio

    Southern Ocean pteropods at risk from ocean warming and acidification

    Get PDF
    Early life stages of marine calcifiers are particularly vulnerable to climate change. In the Southern Ocean aragonite undersaturation events and areas of rapid warming already occur and are predicted to increase in extent. Here, we present the first study to successfully hatch the polar pteropod Limacina helicina antarctica and observe the potential impact of exposure to increased temperature and aragonite undersaturation resulting from ocean acidification (OA) on the early life stage survival and shell morphology. High larval mortality (up to 39%) was observed in individuals exposed to perturbed conditions. Warming and OA induced extensive shell malformation and dissolution, respectively, increasing shell fragility. Furthermore, shell growth decreased, with variation between treatments and exposure time. Our results demonstrate that short-term exposure through passing through hotspots of OA and warming poses a serious threat to pteropod recruitment and long-term population viability

    Volatility forecasting in the Chinese commodity futures market with intraday data

    Get PDF
    Given the unique institutional regulations in the Chinese commodity futures market as well as the characteristics of the data it generates, we utilize contracts with three months to delivery, the most liquid contract series, to systematically explore volatility forecasting for aluminum, copper, fuel oil, and sugar at the daily and three intraday sampling frequencies. We adopt popular volatility models in the literature and assess the forecasts obtained via these models against alternative proxies for the true volatility. Our results suggest that the long memory property is an essential feature in the commodity futures volatility dynamics and that the ARFIMA model consistently produces the best forecasts or forecasts not inferior to the best in statistical terms

    Bio-Repository of DNA in stroke (BRAINS): A study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stroke is one of the commonest causes of mortality in the world and anticipated to be an increasing burden to the developing world. Stroke has a genetic basis and identifying those genes may not only help us define the mechanisms that cause stroke but also identify novel therapeutic targets. However, large scale highly phenotyped DNA repositories are required in order for this to be achieved.</p> <p>Methods</p> <p>The proposed Bio-Repository of DNA in Stroke (BRAINS) will recruit all subtypes of stroke as well as controls from two different continents, Europe and Asia. Subjects recruited from the UK will include stroke patients of European ancestry as well as British South Asians. Stroke subjects from South Asia will be recruited from India and Sri Lanka. South Asian cases will also have control subjects recruited.</p> <p>Discussion</p> <p>We describe a study protocol to establish a large and highly characterized stroke biobank in those of European and South Asian descent. With different ethnic populations being recruited, BRAINS has the ability to compare and contrast genetic risk factors between those of differing ancestral descent as well as those who migrate into different environments.</p
    • …
    corecore