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Introduction

A multitude of concurrent drivers poses a pernicious, global 
threat to marine ecosystems and their services (Bijma 
et al. 2013). With increases in temperature of 0.6–2.0 °C, 
decreases in pH of 0.1–0.4 units and shoaling of the carbon-
ate compensation depth forecasted to occur by 2100 (RCP 
2.6–8.5), ocean acidification (OA), and warming pose an 
acute threat to marine organisms (IPCC 2013; Heinze et al. 
2015). Understanding the impact of these environmental 
perturbations on marine biota remains a major challenge 
(Kroeker et al. 2013), since a range of intra- and inter-spe-
cific responses to multi-stressors have been observed (Wer-
nberg et al. 2012).

Early life history stages are suspected to be especially 
vulnerable to environmental change (Dupont and Thorndyke 
2009), although large variations in tolerance have been 
observed (Foo and Byrne 2017). Viability and survival of 
these stages are vital for successful recruitment and long-
term population stability. Furthermore, early exposure to 
environmental stressors could alter vulnerability of later 
developmental stages through latent effects (such as mor-
tality and shell size), adding to the overall impact (Kroeker 
et al. 2013; Suckling et al. 2014).

High latitude ecosystems are expected to experience OA 
first due to seasonal amplification, freshening, and colder 
temperatures enhancing  CO2 solubility (Doney et al. 2009; 
Fabry et al. 2009). Such processes alter the ratio of dissolved 
inorganic carbon (DIC) and total alkalinity (TA) to values 
where calcium carbonate becomes susceptible to dissolution. 
This poses a significant threat to polar marine organisms 
that form calcium carbonate shells, skeletons, or internal 
structures (Mostofa et al. 2016). In the Southern Ocean car-
bonate undersaturation events have already been observed 
(Bednaršek et al. 2012a) and are predicted to occur more 
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frequently over the coming decades (McNeil and Matear 
2008).

Thecosome pteropods (holoplanktonic gastropods) can 
dominate high latitude zooplankton communities (Hunt 
et al. 2008). In polar regions, shelled pteropods are one of 
the major components within food webs, acting as a food 
source of carnivorous zooplankton, fishes, and a number 
of higher predators (Falk-Petersen and Sargent 2001). Fur-
thermore, polar pteropods contribute significantly to carbon 
and carbonate export to the deep ocean through the sinking 
of dead individuals and faecal pellets (Manno et al. 2007, 
2009). Limacina helicina are true polar pteropods with its 
two species, Limacina helicina antarctica and Limacina 
helicina helicina occurring within the Antarctic and Arc-
tic, respectively (Hunt et al. 2010). They are considered 
sentinels of OA, since their shells consist of aragonite, a 
relatively soluble polymorph of calcium carbonate (Mucci 
1983; Bednaršek et al. 2014). In the Southern Ocean, L. 
helicina antarctica reside within the surface ocean where 
aragonite undersaturation events and ‘hotspots’ of rapid 
warming have already been identified and are predicted to 
become more frequent (McNeil and Matear 2008; Gutt et al. 
2015; Vaughan et al. 2003). This is of particular concern in 
the northern Scotia Sea region, since it has the largest meas-
ured seasonal cycle of surface ocean  CO2 in the Southern 
Ocean (Jones et al. 2012, 2015) as well as upwelling events 
of  CO2 enriched deep water to the surface and hotspots of 
warming (Bednaršek et al. 2012a; Whitehouse et al. 2008; 
Gille 2002).

Shell dissolution of juvenile L. helicina antarctica has 
already been reported in natural populations within the Sco-
tia Sea (Bednaršek et al. 2012a), while numerous incuba-
tion experiments under predicted OA levels of polar ptero-
pod juveniles and adults suggest a range of other negative 
physiological responses (Comeau et al. 2009; Lischka et al. 
2011; Manno et al. 2012; Peck et al. 2016a, b; Seibel et al. 
2012). Manno et al. (2016) demonstrated that maternal and 
embryonic exposure of L. helicina antarctica to acidified 
conditions reduced the percentage of eggs developing to 
later stages by 80%. However, responses to concurrent OA 
and warming remain unresolved (Bednaršek et al. 2016a, b) 
particularly with regard multi-stressor responses of larval 
L. helicina antarctica. To date, studies of larval pteropods 
have focussed on incubating North Atlantic and Mediterra-
nean species with Limacina retroversa exhibiting increased 
mortality (Thabet et al. 2015) and Cavolinia inflexa shell 
malformations (Comeau et al. 2010a) as a result of ocean 
acidification. Due to the key ecological and biogeochemical 
roles of L. helicina antarctica in polar regions, alteration of 
larval shell morphology alongside reduced recruitment to 
adulthood could have major implications on the Southern 
Ocean ecosystem.

In this study, we successfully hatched cultivated polar 
shelled pteropods (L. helicina antarctica) and used these to 
examine responses to the singular and combined impact of 
acidification and warming on posthatch shell development, 
morphology, and survival. These short-term incubations aim 
to simulate the experience of larvae (veliger stage) to vari-
ations in their environment as a result of present day and 
predicted heterogeneity in warm and acidified waters in the 
Southern Ocean (McNeil and Matear 2008; Gutt et al. 2015; 
Vaughan et al. 2003). Larval survivorship and fitness under-
pin recruitment success and any negative impacts from a 
high  CO2 world can ultimately reduce long-term population 
viability in this region (Przeslawski et al. 2008).

Methods

Limacina helicina antarctica were collected aboard the RRS 
James Clark Ross (Cruise number JR304) within the Sco-
tia Sea (57°36′20.5″S, 43°40′22.2″W) in November 2014 
using a motion-compensated Bongo net (100 and 200 µm 
mesh sizes), vertically hauled from 200 m. The motion com-
pensation reduced stress on pteropods during collection and 
avoided mechanical damage to shells. Ambient sea-surface 
conditions at 10 m were characterised by a sea-surface tem-
perature and salinity of 1.62 and 34.3 °C, respectively, with 
a TA (total alkalinity) of 2320 µmol/kg and a pH (total scale) 
of 8.09.

Live adult females were identified following the descrip-
tion of Lalli and Wells (1978) and examined under a light 
microscope (Olympus SZX16 fitted with a Cannon EOS 
60D). Actively swimming individuals with no signs of 
damage (shell and body) and fully translucent shells were 
acclimated within filtered seawater (0.22 µm) for 8 h at 
1.66 ± 0.03 °C (Spartel incubator with a C-400 circulator 
unit and an FC-500 in-line cooler, temperature measured 
every 2 h). After this, individuals that were actively swim-
ming were placed individually within 500 ml incubation 
jars (non-pyrogenic polystyrene,  Corning®) filled with fil-
tered seawater and maintained at 1.22 ± 0.41 °C. Jars were 
stored in darkness and sealed with no headspace to limit  CO2 
exchange and inspected at least every 6 h.

After 9 days, some adults spawned eggs within a 2-h 
period. These were immediately removed using a wide 
mouthed Pasteur pipette to avoid egg cannibalism and 
damage. Mothers were in a good state of health during egg 
production (i.e., swimming and maintaining fully transpar-
ent shells) (Peck et al. 2016a, b). Egg ribbons were placed 
separately into ambient incubatory conditions within 65 ml 
jars of filtered seawater (1.02 ± 0.31 °C). Following further 
7 days of incubation, veligers emerged simultaneously from 
four egg ribbons, each having been laid by a different female. 
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These were mixed and randomly transferred into experimen-
tal conditions via stretched glass pipettes.

Experimental design

All incubations took place within a controlled temperature 
room aboard the RRS James Clark Ross. Posthatch veligers 
were examined under a light microscope and five actively 
swimming individuals with fully translucent shells were 
placed together into each of the 60 incubation jars (65 ml, 
non-pyrogenic polystyrene,  Corning®). Fifteen jars were 
placed into each of the four treatments exemplifying ambi-
ent (1.7 °C and pH 8.1), warm (3.5 °C and pH 8.1), acidified 
(1.7 °C and pH 7.6) or acidified-warm (3.5 °C and pH 7.6) 
conditions (Table 1) based upon predictions in 2100. All 
seawater was filtered (0.22 µm), since the current evidence 
suggests L. helicina antarctica spawn in the autumn and 
overwinter as larvae when food availability is naturally low 
(Hunt et al. 2008; Lischka and Riebesell 2016). Further-
more, filtration removes the possibility of biological activity 
altering the carbonate chemistry within the treatment bottles 
from the target values. To examine the impact of exposure 
time, three bottles were removed from each treatment every 
day for 5 days (Supplementary material Figure 1). Each bot-
tle was gently decanted into deep-welled glass petri dishes 
and veligers were inspected under a light microscope for 
5 min each. Those that were actively swimming and/or 
showed ciliate velum activity were classed as alive. Maxi-
mum shell length was measured using a graticule and con-
dition of the larvae noted before preservation, ensuring no 
secondary preservation effects occurred. All veligers were 
subsequently rinsed with de-ionised water three times. For 
preservation, two specimens from each bottle were air dried 
upon a filter, while the remainder were placed into Eppen-
dorf tubes filled with 70% buffered ethanol.

Ethanol preserved veligers were dehydrated through a 
series of ethanol solutions (50, 70, 80, 90, 95, and 100%, 
5 min each) to stop shell collapse while dried veligers 
needed no further preparation. All veligers were subse-
quently mounted on carbon tape and imaged at 1200× mag-
nification using a variable pressure scanning electron micro-
scope (SEM) (TM3000, Hitachi). Only specimens that were 
living at the end of the incubation were considered for shell 
analysis (n = 233). Using the SEM, the apical shell surface 
was inspected for the presence or absence of pitting (deep 
holes in the shell surface), etching (the partial dissolution of 
the upper shell surface observed by exposure of the granular 
or prismatic layer beneath), and malformation (deviation of 
growth from the expected smooth spiral) (Fig. 4). Since, 
statistically, there was complete separation in the presence/
absence of etching and pitting (for example in etching, pres-
ence was either 100 or 0%), this resolution of shell analysis 
was considered appropriate. The maximum shell diameter 
was also measured using the SEM and light microscope 
graticule to approximate shell size over the exposure period.

Seawater manipulation

A Spartel incubator with a C-400 circulator unit and an 
FC-500 in-line cooler housed within the ship’s cold room 
was used to control incubation temperature. Temperature 
was measured every 4 h throughout the entire incubatory 
period (PreSens fibox 4).

Seawater pH was manipulated through additions of HCl 
(hydrochloric acid) and  NaHCO3 (sodium bicarbonate) cal-
culated by the seacarb software and maintained in a closed 
system (Lavigne and Gattuso 2010). Gas bubbling and 
addition of acid/bicarbonate and/or carbonate are consid-
ered some of the best methods to mimic ocean acidifica-
tion (Gattuso et al. 2011). Acid/base addition was used in 

Table 1  Mean (± SD) values 
of carbonate system parameters 
determined from water samples 
from each treatment

Treatment refers to the target incubation conditions. Temperature was measured every 4 h, while pH (total 
scale) at the start and end of each incubatory period. Salinity, TA, and DIC were determined from samples 
taken at the start of the experiment and subsequently used to calculate  pCO2 (partial pressure of  CO2) and 
Ωar (aragonite saturation state) using  CO2SYS. Salinity was 34.5

Treatment Temperature (°C) TA (μmol/kg) DIC (μmol/kg) Start pH
End pH

Ωar pCO2 (μatm)

Adults 1.22 ± 0.41 2293 2140 8.12 ± 0.01 1.12 364
8.10 ± 0.02

Ambient 1.71 ± 0.05 2322 2162 8.11 ± 0.01 1.38 342
8.10 ± 0.01

Warm 3.50 ± 0.09 2319 2154 8.09 ± 0.01 1.49 343
8.09 ± 0.01

Acidified 1.71 ± 0.05 2329 2332 7.60 ± 0.01 0.62 1180
7.60 ± 0.01

Acidified-warm 3.50 ± 0.09 2325 2320 7.60 ± 0.01 0.61 1194
7.60 ± 0.01
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this instance due to the short incubation period, bottle vol-
umes, and logistical restraints besides minimising the risk 
of damage to veligers as observed from bubbling (Howes 
et al. 2014; Gattuso and Lavigne 2009). Although pH may 
be lower than expected from this technique, we believe that 
the values are within the range predicted to occur by 2100 
(RCP 8.5) in the Southern Ocean (Table 1) (IPCC 2013; 
Gattuso et al. 2011; Gattuso and Lavigne 2009; SCAR 2009; 
Schulz et al. 2009; McNeil and Matear 2008). The calcula-
tion utilised measurements of pH (total scale) made with 
a pH electrode (Metrohm 826) and TA through applying a 
sea-surface salinity (S) and temperature (T) algorithm based 
on Lee et al. (2006) and refined through a recent spatially 
intensive carbonate chemistry survey in this region (M.P. 
Humphreys, pers. comm.):

To determine the impact of the manipulations on the incu-
bation water, we extracted a 250 ml sub-sample of initial 
incubatory conditions, fixed with mercuric chloride, and 
stored in a borosilicate bottle for subsequent analysis of 
TA and DIC. TA was measured by potentiometric titration 
and DIC by coulometry using a VINDTA (Versatile Instru-
ment for the Determination of Titration Alkalinity, version 
3C). Accuracy (TA = 2.5 µmol/kg; DIC = 1.1 µmol/kg) 
was determined using certified reference materials (Scripps 
Institution of Oceanography). pH was determined at the start 
and end of the incubation experiment. Aragonite saturation 
state was indirectly estimated from TA and DIC values using 
 CO2SYS software with the constants of Mehrbach et al. 
(1973) refitted by Dickson and Millero (1987) and sulphate 
dissolution constants by Dickson (1990). Carbonate system 
parameters of the incubations are shown in Table 1.

Statistical analysis

Data were analysed using R (2015). All larvae were con-
sidered when estimating mortality between treatment 
and days (n = 300) exposed; however, only larvae that 
were living at the end of the incubatory period and were 
not damaged during processing were included within the 
analysis of shell morphology and size (n = 233 where 
ambient n = 66, acidified n = 44, warm = 59, acidified-
warm = 54). A binomial (logit) generalised linear model 
(GLM) was used to estimate whether there were any dif-
ferences in etching, pitting, and malformation presence 
between treatments and days exposed. A gamma (identity) 
GLM and a binomial (logit) GLM estimated differences 
in shell size and mortality between treatments and days 
of exposure, respectively. Complete separation between 
treatments for the presence of shell etching and pitting was 

(1)
TA = 683.41S − 9.139S

2 − 1.37T − 0.896T
2 − 10364.16.

found; therefore, a Bayesian analysis with non-informative 
prior assumptions (Gelman et al. 2008) was utilised from 
the arm package (Gelman and Su 2016). Model selection 
was informed using the information theoretic approach 
using the MuMIn package (Barton 2016) to identify 
the models with delta Akaike information criterion < 4 
and the highest Akaike weights (Supplementary mate-
rial Table 8) alongside comparisons of R2 and likelihood 
ratio tests using the lmtest package (Zeileis and Hothorn 
2002). Model validation included checking assumptions 
of residual normality and Homoscedasticity, overdisper-
sion, autocorrelation, collinearity, and independence. For 
post hoc analysis, Tukey’s pairwise comparisons were 
performed using the lsmeans (Lenth 2002). A two-way 
factorial analysis was also used within the same model 
frameworks as above to highlight the presence of any 
interactions between warming, acidification, and exposure 
time on larval shell morphology, size, and mortality.

Confidence intervals (CIs) for mean mortality x were 
calculated by the following:

where n is the number of living larvae per incubation bottle 
at the start of the incubation, σ the standard deviation, and 
Zα/2 the Z-table value for a given α value. Confidence inter-
vals for the mean occurrence of shell malformation, pitting, 
and etching as well as larval mortality were calculated by the 
modified Wald method (Agresti and Coull 1998).

Results

Change in larval pteropod mortality

Significantly more larval fatalities occurred within warm, 
acidified, and acidified-warm conditions overall in compar-
ison to ambient treatments (p < 0.01) (Fig. 1a). However, 
the number of fatalities did not change with the amount of 
time exposed to these conditions (p > 0.05) (Supplemen-
tary materials Table 1). A post hoc analysis showed that 
throughout, mortality was significantly higher in acidified 
conditions (38.7%, n = 29) and acidified-warm conditions 
(25.3%, n = 19) compared to that in warm (12%, n = 9) 
and ambient conditions (2.7%, n = 2) (p < 0.001). Fur-
thermore, a factorial analysis indicated that acidification 
(p < 0.001), rather than warming (p > 0.05), increases 
larval mortality. However, larval mortality significantly 
increases when warming and acidification are combined 
(p < 0.01) (Supplementary materials Table 2). For a sum-
mary of mortalities, see Supplementary materials Table 3.

(2)CI = x ±
Z�

2
�∕

√

n,
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Change in larval pteropod shell size

Larvae in all treatments significantly increased their shell 
size during the incubation (p < 0.001). Over the entire 
exposure time, larvae experiencing acidified (p < 0.05) 
and acidified-warm (p < 0.01) conditions were smaller 
than in ambient and warm conditions, which were similar 
(p > 0.05) (Fig. 1b) (Supplementary materials Table 4). 
Post hoc analysis indicated that shells incubated in acidi-
fied-warm conditions were significantly smaller than those 
in ambient conditions (p > 0.001) but were not different 
from those in acidified conditions (p > 0.05). Furthermore, 
during the first 3 days of exposure, shell size was similar 
between ambient, warm, and acidified conditions, but sub-
sequently, shell size was smaller in warm and acidified con-
ditions relative to ambient conditions (p < 0.01). The rate 
of change in shell size was significantly lower in acidified-
warm conditions on day 2 (p < 0.05), warm conditions on 
day 4 and 5 (p < 0.001), and acidified conditions on day 5 
(p < 0.05) (Supplementary materials Table 4). This resulted 
in shell size on day 5 being smaller on exposure to warm-
ing (104.5 ± 1.11 µm, n = 13), acidified (106.0 ± 2.0 µm, 
n = 10), and acidified-warm conditions (105.2 ± 1.2 µm, 
n = 12) compared to ambient conditions (113.0 ± 0.9 µm, 
n = 14). The factorial analysis indicated that shell growth 
was primarily reduced by exposure to acidified conditions 
(p < 0.001) rather than warm (p > 0.05) with no interaction 
between them (p > 0.05).

Change in larval pteropod shell morphology

Malformation Significantly more larval shell malforma-
tions were present in response to warm and acidified-warm 
conditions compared to ambient and acidified conditions 
(p < 0.0001) (Fig. 2a) (Supplementary material Table 6). 
Post hoc analysis indicated a similar number of larvae devel-
oped malformations on exposure to acidified-warm (62.5%, 
n = 35) and warm conditions (49.2%, n = 29) (p > 0.05). 
Likewise, there was no difference in the number of malfor-
mations between acidified (9.1%, n = 4) and ambient con-
ditions (3%, n = 2) (p > 0.05). Malformations occurred as 
a result of exposure to warm conditions (p > 0.001) rather 
than acidification (p > 0.05) with no interaction between 
them (p > 0.05) (Supplementary material Table 7). The 
number of shell malformations was highly dependent on the 
amount of time that the individuals were exposed to each 
condition (p < 0.0001, n = 223), with larval malformation 
instances significantly increasing after 3 days of exposure 
(p < 0.001). There was an 82% increase in malformation 
occurrence within acidified-warm conditions after the first 
3 days of exposure. Furthermore, the number of malforma-
tions gradually increased in warming conditions with none 
being present on day 1–92% being malformed after 5 days.

Pitting Larvae that experienced warm, acidified, and 
acidified-warm conditions all displayed significantly higher 
amounts of shell pitting than those incubated in ambient 
conditions (Fig. 2b) (p < 0.001, n = 223) (Supplementary 

Fig. 1  Limacina helicina 
antarctica larval mortality (a) 
and shell size (b) over time dur-
ing incubation under ambient 
(pink), warm (orange), acidified 
(blue), and acidified-warm 
(green) conditions. Only larvae 
that were alive upon harvesting 
were included in the analysis 
of shell size. Bars denote 95% 
confidence intervals between 
treatment bottles
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material Table 6). Larval shells with the most pitting (47%, 
n = 28) were found in warm conditions, although this was 
not statistically different from the pitting instances on larval 
shells exposed to acidified-warm (40%, n = 20) or acidified 
(23%, n = 10) conditions (p > 0.05). Warming and acidifi-
cation both increased the instances of pitting; however, the 
combination of acidified-warm conditions does not increase 
pitting instances as much as would be expected from an 
additive or a synergistic response (p < 0.01, n = 223) (Sup-
plementary material Table 7). The amount of time larvae 
were exposed to each condition did not alter the number of 
pitting instances (p > 0.05, n = 223).

Etching There were significantly more cases of shell 
etching in acidified and acidified-warm conditions 

compared to ambient and warm conditions (p < 0.001, 
n = 223) (Fig. 2c) (Supplementary material Table 6). The 
presence of etching was attributable to acidification only 
(p < 0.001, n = 223) with no effect of exposure to warm 
conditions or an interaction (p > 0.05, n = 223) (Sup-
plementary material Table 7). Larvae incubated in ambi-
ent and warm conditions exhibited either no or few cases 
(2.97%, n = 3) of etching, respectively, with no significant 
difference between the conditions (p > 0.05). Conversely, 
after 1 day (24 h) of exposure to acidified and acidified-
warm conditions, all larvae had shell etching present, and 
there was no change in the instances of etching over time 
(p > 0.05, n = 223).

Fig. 2  Limacina helicina 
antarctica larval shell con-
dition showing percentage 
occurrence of a malformation, 
b pitting, and c etching over 
time during incubation under 
ambient (pink), warm (orange), 
acidified (blue), and acidified-
warm (green) conditions. Bars 
denote 95% confidence intervals 
between treatment bottles. Only 
larvae that were alive upon har-
vesting were included (n = 223)
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Overall shell morphology

Those individuals that exhibited etching and malforma-
tions together without pitting most frequently occurred 
within acidified-warm conditions (87%, n = 34), with 10% 
(n = 4) in acidified and 3% (n = 1) in warm conditions. A 
similar number of larvae developed malformation and pit-
ting without etching within warm and acidified-warm con-
ditions at 45% (n = 12) and 55% (n = 10), respectively. 
Larvae developed both shell etching and pitting without 
malformations within acidified-warm (66%, n = 19) and 
acidified (35%, n = 10) conditions only. All the larvae that 
displayed shell pitting, malformation, and etching together 
occurred within acidified-warm conditions (Fig. 3). The 
SEM images in Fig. 4 highlight these general combinations 
of shell morphology.

Discussion

Ocean acidification increases larval mortality

We demonstrate that veligers of L. helicina antarctica are 
sensitive to warm, acidified, and acidified-warm oceanic 
conditions predicted for 2100 in the Scotia Sea (IPCC 2013; 
McNeil and Matear 2008), given that there was a high level 
of larval mortality on exposure to these conditions. The pre-
vious studies on Arctic juvenile and adult pteropods incu-
bated in acidified conditions (over 5 and 8 days–1 month) 

found survivorship of 80–100% (Comeau et al. 2009; Manno 
et al. 2012; Lischka and Riebesell 2012). Here, we show 
lower survival (down to 61%) of larval L. helicina antarc-
tica. A similar low survivorship was also found on incuba-
tion of larval L. retroversa in acidified conditions indicating 
increased sensitivity of early life stages (Thabet et al. 2015). 
This fits the general trend that the early stage molluscs 
are more vulnerable to acidification than adults (Kroeker 
et al. 2013; Waldbusser et al. 2015a). Acidification rather 
than warming appears to be the main driver of increased 
mortality. Furthermore, there was no synergistic or addi-
tive increase in mortality through the addition of warming 
to acidification. Acidification, therefore, poses the great-
est threat to survivorship of larval L. helicina antarctica. 
However, warming has other sub-lethal influences on shell 
production and maintenance that may increase vulnerability 
in the natural environment. Interestingly, mortality did not 
change with exposure time, suggesting that either fatalities 
were sensitive phenotypes that would have died regardless 
of the exposure timeframe or because larvae were more sen-
sitive in the first day of exposure and the more vulnerable 
died sooner. The short time-scale over which these effects 
were observed has particular relevance to the environmental 
experience of pteropods, which are most likely to be exposed 
to such conditions through contact with mesoscale bodies of 
water where such altered conditions prevail (Bednaršek et al. 
2012a). In the Southern Ocean, pH exhibits spatiotemporal 
variation with water masses, meltwater, season, and phyto-
plankton productivity (Kapsenberg et al. 2015; Schram et al. 
2015). Furthermore, the continued uptake of anthropogenic 
 CO2 by the surface ocean is predicted to make undersatura-
tion events occur more frequently over the coming decades 
where water bodies may become corrosive to aragonite dur-
ing wintertime by 2038 and will be widespread across the 
Southern Ocean by 2100 (McNeil and Matear 2008).

Ocean acidification and warming decreases shell size

For shell growth to occur, larvae take up carbonate ions from 
the surrounding seawater and concentrate them within the 
isolated extrapallial space. With acidification, the concentra-
tion of surrounding carbonate ions declines and, therefore, 
more energy is needed for calcification. Larval shell size 
increased in all treatments, even when exposed to acidified 
and warm conditions. Continuing shell calcification, despite 
exposure to acidified conditions and Ωar < 1, has also be 
observed in Arctic L. retroversa (Manno et al. 2012) and L. 
helicina helicina (Lischka et al. 2011; Comeau et al. 2010b). 
Previously, Comeau et al. (2009, 2010b) demonstrated that 
calcification stopped when the saturation state of aragonite 
was below 0.7 in Arctic L. helicina helicina. Larvae in the 
present study were incubated at Ωar = 0.62 and 0.61 in acidi-
fied and acidified-warm conditions, respectively, and shell 

Fig. 3  Larval Limacina helicina antarctica shell morphology over 
5 days of exposure to ambient, warm, acidified, and acidified-warm 
conditions. Each bar shows the treatments where a combination of 
different shell morphologies (pitting, malformation, and etching) 
developed on the same single larval shell. Only larvae that were alive 
upon harvesting were included (n = 223)
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growth continued. This suggests some resilience of these 
early life stages to short-term exposure to OA (Lischka et al. 
2011; Comeau et al. 2010a); however, shell morphology was 
still altered. Larval shell sizes were smaller upon exposure 
to acidified and acidified-warm conditions than in ambient 
conditions. Smaller shell size with exposure to acidification 
has also been observed in L. helicina juveniles and adults 
(Comeau et al. 2009; Lischka et al. 2011; Comeau et al. 
2012). We found that warming and acidification did not 
interact and further impact larval shell growth, indicating 
that warming did not mitigate the impact of OA.

Decreased shell size and delayed growth can be attrib-
uted to impeded shell deposition, dissolution exceeding 
calcification, and reduced energetic capacity (Watson et al. 
2009). Since larval shell growth increased on exposure to 
acidified conditions initially and shell etching was observed 
throughout the 5-day period, it is unlikely that the mecha-
nistic capacity of shell formation was exceeded. However, 
increased acid–base regulation in acidified conditions is 

energetically demanding and may explain smaller shell 
sizes. Altering external conditions increases the energetic 
demand of maintaining homeostasis and where these costs 
cannot be met; complete or partial metabolic suppression 
may be induced as an adaptive strategy to extend survival 
time (Pörtner 2008).

Juvenile L. helicina antarctica exposed to acidic condi-
tions suppressed their metabolic rate (Seibel et al. 2012), 
while Arctic L. helicina helicina exposed to acidified-warm 
conditions increased their metabolic rate (Lischka and 
Riebesell 2016). Altering metabolic rate enables energetic 
allocation to essential physiological processes at the expense 
of other processes, including shell formation (Pörtner 2008). 
Food availability has been shown to mediate the impact of 
ocean acidification in calcifying organisms; therefore, it is 
possible that with food acquisition, the impacts observed 
within this study could decline (Seibel et al. 2012; Ramajo 
et  al. 2016). L. helicina antarctica veligers are able to 
feed directly after hatching and are, therefore, probably 

Fig. 4  Limacina helicina antarctica larval shell morphology as a result of 5 days of exposure to a ambient, b warm, c acidified, and d acidified-
warm conditions. Examples of malformation (1), pitting (2) and etching (3) are highlighted with arrows. Larvae were alive upon harvesting
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not dependent on egg stores (Paranjape 1968; Böer et al. 
2005). Current estimations vary in whether L. helicina 
antarctica overwinter as larvae, when food availability is 
naturally low or in the summer, when it is high (Hunt et al. 
2008; Bednaršek et al. 2012b; Wang et al. 2017). Since 
shell growth reduced by day 3 and ceased by day 4 in all 
treatments, we hypothesise that here, larvae may have been 
initially utilising endogenous reserves and that these were 
depleted at differing rates between treatments depending on 
the energetic cost of maintaining homeostasis, finally induc-
ing a stasis in shell size.

Shell morphology is altered in a high  CO2 world

We show that larvae incubated under acidified-warm condi-
tions displayed a combination of both shell etching and shell 
malformation. The previous studies suggested that warm-
ing may offset the negative impacts of ocean acidification 
(sea urchin: Brennand et al. 2010, coral: McCulloch et al. 
2012), although others have revealed cumulative (diatom: 
Boyd et al. 2015) and even synergistic interactions (ptero-
pod: Lischka and Riebesell 2012). Here, we demonstrate 
that the impacts of warming and acidification on larval shell 
morphology are separate, with warming initiating shell 
malformations and acidification resulting in shell etching. 
This lack of interaction between warming and acidification 
has also been observed in Arctic L. helicina helicina and 
L. retroversa juveniles (Lischka et al. 2011; Comeau et al. 
2010b; Lischka and Riebesell 2012). It suggests that warm-
ing and acidification impact different metabolic processes, 
thus resulting in malformation and etching, respectively, in 
pteropod larvae.

Temperature has been shown to have a significant effect 
on biomineralisation processes and growth across a num-
ber of calcifying species (Gazeau et al. 2013). Increased 
temperature can boost shell growth within an organism’s 
thermal tolerance window and aid acclimatisation to warm-
ing (Somero 2010), but shell microstructure can be altered 
when this optimum is exceeded (Mackenzie et al. 2014), 
resulting in shell malformations as observed in the current 
study (Fig. 1). Regions of strain on a shell, such as areas of 
attachment, are particularly susceptible to disruption which 
could explain the banding of malformations occurring paral-
lel to the aperture observed in the current study. Since pit-
ting and malformation occurred in warm and acidified-warm 
conditions, this suggests that pitting is a result of malforma-
tion, perhaps as points of failure where shells surpass their 
physical limits and causing deformation. Acidification was 
also shown to cause shell pitting, which is consistent with 
prior studies (Auzoux-Bordenave et al. 2010; Bednaršek 
et al. 2012b). Shell pitting can, therefore, occur as a result 
of two different processes and could signify exposure to 
acidification, warming, or both. Overall, this demonstrates 

the structural fragility and loss of integrity of larval shells 
in high  CO2 conditions.

In contrast to warming, the ability of larvae to counter-
act acidification depends on a combination of the energetic 
capability to repair shell damage internally (Lischka et al. 
2011; Waldbusser et al. 2013, 2015b), the effectiveness and 
intactness of the protective organic matrix (periostracum) 
surrounding the shell (Peck et al. 2016a, b), and the ability to 
regulate ion and acid–base balance to maintain pH at the site 
of calcification (Thorp and Covich 2009). On exposure of L. 
helicina antarctica larvae to acidified conditions, shell etch-
ing occurred in 100% of individuals from day 1, suggesting a 
failure in one of these mechanisms. This percentage is higher 
than previously observed in later life stages (Bednaršek et al. 
2012b, 2014; Seibel et al. 2012), indicating that L. helicina 
antarctica larvae may be particularly sensitive to shell etch-
ing, although direct comparison is difficult due to variation 
in species, origin, and methodology (Gazeau et al. 2013). 
Many early life history stages of gastropods lack specialised 
ion-regulatory mechanisms required for acid–base mainte-
nance (Ries 2011a, b). However, since shell size continued 
to increase and etching occurred on the upper shell surface, 
it is unlikely that this was the main cause of shell disso-
lution. Numerous early larval stages of benthic gastropods 
secrete amorphous calcium carbonate, which is more prone 
to dissolution, before a transition to aragonite (Weiss et al. 
2002; Melzner et al. 2011; Duquette et al. 2017). If this was 
true for pteropods, it would explain why the protoconches 
of arctic L. helicina helicina, that represent larval shells, 
are particularly susceptible to shell dissolution compared to 
outer whorls formed in later life stages (Peck et al. 2016a, 
b). Regardless of the shell composition, the periostracum 
may have been breached, ineffective, or absent for etching 
to have occurred (Peck et al. 2016a, b), although the exact 
role of a pteropod’s periostracum as protection against ocean 
acidification requires further investigation (Ries 2011a, b; 
Bednaršek et al. 2016a, b). Since etching did not occur in 
patterns indicative of abrasion or cracking and there was no 
mechanism for this to occur, it is unlikely that the periosta-
cum was breached. Furthermore, a mechanism allowing iso-
lation of the extrapallial space from the surrounding under-
saturated seawater is needed for calcification to proceed, 
suggesting that a periostracum is present. We suggest that 
the periostracum is not as developed in the newly hatched 
larvae as in later life stages of pteropods and is, therefore, 
inadequate in protecting larval shells from acidification.

The capacity of pteropods to maintain a viable population 
distribution and abundance in the Southern Ocean depends 
on their capability to recruit successfully. We showed that 
OA and warming do not act synergistically, with the nature 
of the impacts on viability being recognisably different 
between the two. Survivorship was mainly influenced by 
the level of acidification, while the effects of warming were 
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more likely to be sub-lethal and did not increase mortality 
levels when combined with acidification. We demonstrate 
that the short-term exposures that are likely to be experi-
enced in the natural environment of larval L. helicina ant-
arctica will have a major impact on survivorship and conse-
quently, population stability in these regions.

Acknowledgements We thank the captain and the crew of the RRS 
James Clark Ross for their support in all the logistical operations on 
board. G. A. Lee, S. Humphrey, and O. Legge helped with carbonate 
chemistry analysis. M. Humphreys provided algorithms to determine 
total alkalinity. K. Sales gave advice on statistical analysis.

Author contributions CM conceptualised the project. JG wrote the 
manuscript. JG, GT, and VP carried out the fieldwork. CM, GT, VP, 
and DB provided theoretical overviews and help in the writing of the 
manuscript. DB aided with the carbonate chemistry analysis.

Compliance with ethical standards 

Funding This work was carried out as part of the EnvEast Doctoral 
training partnership (NE/L002582/1) and the ecosystems programme 
at the British Antarctic Survey during a Western Corebox cruise.

Ethical approval All applicable international, national, and institu-
tional guidelines for the care and use of animals were followed.

Conflict of interest The authors declare that they have no conflict of 
interest or competing financial interests.

Open Access This article is distributed under the terms of the 
Creative Commons Attribution 4.0 International License (http://crea-
tivecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to 
the Creative Commons license, and indicate if changes were made.

References

Agresti A, Coull BA (1998) Approximate is better than ‘exact’ for inter-
val estimation of binomial proportions. Am Stat 52(2):119–126

Auzoux-Bordenave S, Badou A, Gaume B, Berland S, Helléouet M, 
Milet C, Huchette S (2010) Ultrastructure, chemistry and min-
eralogy of the growing shell of the European abalone Haliotis 
tuberculata. J Struct Biol 171:277–290

Barton K (2016) MuMIn: multi-model inference. R package version 
1.15.6. https://CRAN.R-project.org/package=MuMIn. Accessed 
03 May 2016

Bednaršek N, Tarling GA, Bakker DCE, Fielding S, Cohen A, Kuzirian 
A, McCorkle D, Lézé B, Montagna R (2012a) Description and 
quantification of pteropod shell dissolution: a sensitive bioindica-
tor of ocean acidification. Glob Change Biol 18(7):2378–2388

Bednaršek N, Tarling GA, Bakker DCE, Fielding S, Jones EM, Ven-
ables HJ, Ward P, Kuzirian A, Lézé B, Feely RA, Murphy EJ 
(2012b) Extensive dissolution of live pteropods in the Southern 
Ocean. Nat Geosci 5(12):881–885

Bednaršek N, Tarling GA, Bakker DCE, Fielding S, Feely RA (2014) 
Dissolution dominating calcification process in polar ptero-
pods close to the point of aragonite undersaturation. PLoS One 
9(10):e109183. https://doi.org/10.1371/journal.pone.0109183

Bednaršek N, Harvey CJ, Kaplan IC, Feely RA, Moz J (2016a) Pter-
opods on the edge: cumulative effects of ocean acidification, 
warming and deoxygenation. Prog Oceanogr 145:1–24

Bednaršek N, Johnson J, Feely RA (2016b) Comment on Peck et al.: 
vulnerability of pteropod (Limacina helicina) to ocean acidifi-
cation: shell dissolution occurs despite an intact organic layer. 
Deep Sea Res Part II 127:53–56

Bijma J, Pörtner HO, Yesson C, Rogers AD (2013) Climate change 
and the oceans—what does the future hold? Mar Pollut Bull 
74(2):495–505

Böer M, Gannefors C, Kattner G, Graeve M, Hop H, Falk-Petersen 
S (2005) The Arctic pteropod Clione limacina: seasonal lipid 
dynamics and life-strategy. Mar Biol 147(3):707–717

Boyd PW, Dillingham PW, McGraw CM, Armstrong EA, Cornwall 
CE, Feng YY, Hurd CL, Gault-Ringold M, Roleda MY, Tim-
mins-Schiffman E, Nunn BL (2015) Physiological responses of 
a Southern Ocean diatom to complex future ocean conditions. 
Nature Clim Change 6:207–213

Brennand HS, Soars N, Dworjanyn SA, Davis AR, Byrne M (2010) 
Impact of ocean warming and ocean acidification on larval 
development and calcification in the sea urchin Tripneustes 
gratilla. PLoS One 5(6):e11372. https://doi.org/10.1371/jour-
nal.pone.0011372

Comeau S, Gorsky G, Jeffree R, Teyssie JL, Gattuso JP (2009) 
Impact of ocean acidification on a key Arctic pelagic mollusc 
(Limacina helicina). Biogeosciences 6(9):1877–1882

Comeau S, Gorsky G, Alliouane S, Gattuso JP (2010a) Larvae of the 
pteropod Cavolinia inflexa exposed to aragonite undersaturation 
are viable but shell-less. Mar Biol 157(10):2341–2345

Comeau S, Jeffree R, Teyssié JL, Gattuso JP (2010b) Response 
of the Arctic pteropod Limacina helicina to projected future 
environmental conditions. PLoS One 5(6):e11362. https://doi.
org/10.1371/journal.pone.0011362

Comeau S, Alliouane S, Gattuso J, June P, Pen O, Alliouane S, Gat-
tuso J (2012) Effects of ocean acidification on overwintering 
juvenile Arctic pteropods Limacina helicina. Mar Ecol Prog 
Ser 456:279–284

Dickson AG (1990) Standard potential of the reaction: AgCl(s) + 1/2 
 H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of 
the ion  HSO4

− in synthetic sea water from 273.15 to 318.15 K. 
K. J Chem Thermodyn 22:113–127

Dickson AG, Millero FJ (1987) Comparison of the equilibrium con-
stants for the dissociation of carbonic acid in seawater media. 
Deep Sea Res Part I 34(111):1733–1743

Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidifica-
tion: the other  CO2 problem. Annu Rev Mar Sci 1(1):169–192

Dupont S, Thorndyke MC (2009) Impact of  CO2-driven ocean 
acidification on invertebrate’s early life-history-what we know, 
what we need to know and what we can do. Biogeosciences 
6:3109–3131

Duquette, A McClintock JB, Amsler CD, Pérez-Huerta A, Milazzo 
M, Hall-Spencer JM (2017) Effects of ocean acidification on the 
shells of four Mediterranean gastropod species near a  CO2 seep. 
Mar Pollut Bull (in press)

Fabry VJ, McClintock JB, Mathis JT, Grebmeier JM (2009) Ocean 
acidification at high latitudes: the bellwether. Oceanography 
22(4):160–171

Falk-Petersen S, Sargent JR (2001) Lipids and fatty acids in Clione 
limacina and Limacina helicina in Svalbard waters and the Arctic 
Ocean: trophic implications. Polar Biol 24(3):163–170

Foo AF, Byrne M (2017) Marine gametes in a changing ocean: impacts 
of climate change stressors on fecundity and the egg. Mar Environ 
Res. https://doi.org/10.1016/j.marenvres.2017.02.004 (in press)

Gattuso JP, Lavigne H (2009) Approaches and software tools to 
investigate the impact of ocean acidification. Biogeosciences 
6(10):2121–2133

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://CRAN.R-project.org/package%3dMuMIn
https://doi.org/10.1371/journal.pone.0109183
https://doi.org/10.1371/journal.pone.0011372
https://doi.org/10.1371/journal.pone.0011372
https://doi.org/10.1371/journal.pone.0011362
https://doi.org/10.1371/journal.pone.0011362
https://doi.org/10.1016/j.marenvres.2017.02.004


Mar Biol  (2018) 165:8  

1 3

Page 11 of 12  8 

Gattuso JP, Gao K, Lee K, Rost B, Schulz KG (2011) Approaches 
and tools to manipulate the carbonate chemistry. In: Riebesell U, 
Fabry VJ, Hansson L, Gattuso JP (eds) Guide to best practices 
for ocean acidification research and data reporting. Publications 
Office of the European Union, Luxembourg, pp 243–258

Gazeau F, Parker LM, Comeau S, Gattuso JP, O’Connor WA, Martin 
S, Pörtner HO, Ross PM (2013) Impacts of ocean acidification on 
marine shelled molluscs. Mar Biol 160(8):2207–2245

Gelman A, Su Y (2016) Arm: data analysis using regression and mul-
tilevel/hierarchical models; R package version 1.8-6. Cambridge 
University Press, Cambridge

Gelman A, Jakulin A, Pittau MG, Su YS (2008) A weakly informative 
default prior distribution for logistic and other regression models. 
Ann Appl Stat 2(4):1360–1383

Gille ST (2002) Warming of the Southern Ocean since the 1950s. Sci-
ence 295(5558):1275–1277

Gutt J, Bertler N, Bracegirdle TJ, Buschmann A, Comiso J, Hosie 
G, Isla E, Schloss IR, Smith CR, Tournadre J, Xavier JC (2015) 
The Southern Ocean ecosystem under multiple climate change 
stresses-an integrated circumpolar assessment. Glob Change Biol 
21(4):1434–1453

Heinze C, Meyer S, Goris N, Anderson L, Steinfeldt R, Chang N, Le 
Quéré C, Bakker DCE (2015) The ocean carbon sink: impacts, 
vulnerabilities and challenges. Earth Syst Dyn 6(1):327–358

Howes EL, Bednaršek N, Büdenbender J, Comeau S, Doubleday A, 
Gallager SM, Hopcroft RR, Lischka S, Maas AE, Bijma J, Gattuso 
JP (2014) Sink and swim: a status review of thecosome pteropod 
culture techniques. J Plankton Res 36(2):299–315

Hunt BPV, Pakhomov EA, Hosie GW, Siegel V, Ward P, Bernard K 
(2008) Pteropods in Southern Ocean ecosystems. Prog Oceanogr 
78(3):193–221

Hunt B, Strugnell J, Bednarsek N, Linse K, Nelson RJ, Pakhomov E, 
Seibel B, Steinke D, Würzberg L (2010) Poles apart: the “bipolar” 
pteropod species Limacina helicina is genetically distinct between 
the Arctic and Antarctic oceans. PLoS One 5(3):e9835

IPCC (2013) In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, 
Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate 
change 2013: the physical science basis. Contribution of working 
group I to the fifth assessment report of the intergovernmental 
panel on climate change. Cambridge University Press, Cam-
bridge, UK and New York, NY, USA. https://doi.org/10.1017/
CBO9781107415324

Jones EM, Bakker DCE, Venables HJ, Watson AJ, Georgia S (2012) 
Dynamic seasonal cycling of inorganic carbon downstream 
of South Georgia, Southern Ocean. Deep Sea Res Part II 
59–60:25–35

Jones EM, Bakker DCE, Venables HJ, Hardman-Mountford NJ (2015) 
Seasonal cycle of  CO2 from the sea ice edge to island blooms in 
the Scotia Sea, Southern Ocean. Mar Chem 177:490–500

Kapsenberg L, Kelley AL, Shaw EC, Martz TR, Hofmann GE (2015) 
Near-shore antarctic pH variability has implications for the design 
of ocean acidification experiments. Sci Rep 5:9638

Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, 
Duarte CM, Gattuso JP (2013) Impacts of ocean acidification on 
marine organisms: quantifying sensitivities and interaction with 
warming. Glob Change Biol 19(6):1884–1896

Lalli CM, Wells FE (1978) Reproduction in the genus Limacina 
(Opisthobranchia: Thecosomata). J Zool 186:95–108

Lavigne H, Gattuso JP (2010) Seacarb: seawater carbonates chem-
istry with R package version 3.1.3. http://CRAN.R-project.org/
package=seacarb. Accessed 03 May 2016

Lee RF, Hagen W, Kattner G (2006) Lipid storage in marine zooplank-
ton. Mar Ecol Prog Ser 307(1863):273–306

Lenth R (2002) lsmeans: least-squares means. R package version 2.20-
23. http://CRAN.R-project.org/package=lsmeans. Accessed 03 
May 2016

Lischka S, Riebesell U (2012) Synergistic effects of ocean acidifica-
tion and warming on overwintering pteropods in the Arctic. Glob 
Change Biol 18(12):3517–3528

Lischka S, Riebesell U (2016) Metabolic response of Arctic pteropods 
to ocean acidification and warming during the polar night/twi-
light phase in Kongsfjord (Spitsbergen). Polar Biol. https://doi.
org/10.1007/s00300-016-2044-5

Lischka S, Büdenbender J, Boxhammer T, Riebesell U (2011) Impact 
of ocean acidification and elevated temperatures on early juveniles 
of the polar shelled pteropod Limacina helicina: mortality, shell 
degradation, and shell growth. Biogeosciences 8:919–932

Mackenzie CL, Ormondroyd GA, Curling SF, Ball RJ, Whiteley NM, 
Malham SK (2014) Ocean warming, more than acidification, 
reduces shell strength in a commercial shellfish species during 
food limitation. PLoS One 9(1):e86764. https://doi.org/10.1371/
journal.pone.0086764

Manno C, Sandrini S, Tositti L, Accornero A (2007) First stages of 
degradation of Limacina helicina shells observed above the arago-
nite chemical lysocline in Terra Nova Bay (Antarctica). J Mar Syst 
68(1–2):91–102

Manno C, Accornero A, Umani SF (2009) Importance of the contri-
bution of Limacina helicina faecal pellets to the carbon pump 
in Terra Nova Bay (Antarctica). J Plankton Res 32(2):145–152

Manno C, Morata N, Primicerio R (2012) Limacina retroversa’s 
response to combined effects of ocean acidification and sea water 
freshening. Estuar Coast Shelf Sci 113:163–171

Manno C, Peck VL, Tarling GA (2016) Pteropod eggs released at high 
 pCO2 lack resilience to ocean acidification. Sci Rep 6:e25752. 
https://doi.org/10.1038/srep25752

McCulloch M, Falter J, Trotter J, Montagna P (2012) Coral resilience to 
ocean acidification and global warming through pH up-regulation. 
Nat Clim Change 2(4):1–5

McNeil BI, Matear RJ (2008) Southern Ocean acidification: a tipping 
point at 450-ppm atmospheric  CO2. Proc Natl Acad Sci USA 
105(48):18860–18864

Mehrbach C, Culberson CH, Hawley JE, Pytkowicx RM (1973) Meas-
urement of the apparent dissociation constants of carbonic acid in 
seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

Melzner F, Stange P, Trübenbach K, Thomsen J, Casties I, Panknin 
U, Gorb SN, Gutowska MA (2011) Food supply and seawater p 
 CO2 impact calcification and internal shell dissolution in the blue 
mussel Mytilus edulis. PLoS One 6(9):e24223

Mostofa KMG, Liu C, Zhai W, Minella M, Vione D, Gao K, Minakata 
D, Arakaki T, Yoshioka T, Hayakawa K, Konohira E (2016) 
Reviews and syntheses: ocean acidification and its potential 
impacts on marine ecosystems. Biogeosciences 13:1767–1786

Mucci A (1983) The solubility of calcite and aragonite in seawater at 
various salinities, temperatures, and one atmosphere total pres-
sure. Am J Sci 283:780–799

Paranjape M (1968) The egg mass and veligers of Limacina helicina 
Phipps. Veliger 10:322–326

Peck VL, Tarling GA, Manno C, Harper EM (2016a) Reply to com-
ment by Bednaršek. Deep Sea Res Part II 127:57–59

Peck VL, Tarling GA, Manno C, Harper EM, Tynan E (2016b) Outer 
organic layer and internal repair mechanism protects pteropod 
Limacina helicina from ocean acidification. Deep Sea Res Part 
II 127:41–52

Pörtner HO (2008) Ecosystem effects of ocean acidification in times 
of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 
373:203–217

Przeslawski R, Ahyong S, Byrne M, Worheides G, Hutchings P (2008) 
Beyond corals and fish: the effects of climate change on non-
coral benthic invertebrates of tropical reefs. Glob Change Biol 
14:2773–2795

Ramajo L, Pérez-León E, Hendriks IE, Marba N, Krause-Jensen D, 
Sejr MK, Blicher ME, Lagos NA, Olsen YS, Duarte CM (2016) 

https://doi.org/10.1017/CBO9781107415324
https://doi.org/10.1017/CBO9781107415324
http://CRAN.R-project.org/package%3dseacarb
http://CRAN.R-project.org/package%3dseacarb
http://CRAN.R-project.org/package%3dlsmeans
https://doi.org/10.1007/s00300-016-2044-5
https://doi.org/10.1007/s00300-016-2044-5
https://doi.org/10.1371/journal.pone.0086764
https://doi.org/10.1371/journal.pone.0086764
https://doi.org/10.1038/srep25752


 Mar Biol  (2018) 165:8 

1 3

 8  Page 12 of 12

Food supply confers calcifiers resistance to ocean acidification. 
Sci Rep. https://doi.org/10.1038/srep19374

Ries JB (2011a) A physicochemical framework for interpreting the 
biological calcification response to  CO2 induced ocean acidifica-
tion. Geochim Cosmochim Acta 75(14):4053–4064

Ries JB (2011b) Skeletal mineralogy in a high  CO2 world. J Exp Mar 
Biol Ecol 403(1–2):54–64

Schram JB, Schoenrock KM, McClintock JB, Amsler CD, Angus RA 
(2015) Multi-frequency observations of seawater carbonate chem-
istry on the central coast of the western Antarctic Peninsula. Polar 
Res 34(1):25582

Schulz KG, Barcelos e Ramos J, Zeebe RE, Riebesell U (2009)  CO2 
perturbation experiments: similarities and differences between 
dissolved inorganic carbon and total alkalinity manipulations. 
Biogeosciences 6(10):2145–2153

Seibel BA, Maas AE, Dierssen HM (2012) Energetic plasticity under-
lies a variable response to ocean acidification in the pteropod, 
Limacina helicina antarctica. PLoS One 7(4):e30464

Somero GN (2010) The physiology of climate change: how potentials 
for acclimatization and genetic adaptation will determine ‘win-
ners’ and ‘losers’. J Exp Biol 213(6):912–920

Suckling CC, Clark MS, Beveridge C, Brunner L, Hughes AD, Harper 
EM, Cook EJ, Davies AJ, Peck LS (2014) Experimental influence 
of pH on the early life-stages of sea urchins II: increasing parental 
exposure times gives rise to different responses. Invertebr Reprod 
Dev 58(3):161–175

R Development Core Team (2015) R: a language and environment 
for statistical computing. R Foundation for Statistical Comput-
ing, version 3.1.3. https://cran.r-project.org. Accessed 03 May 16

Thabet AA, Maas AE, Lawson GL, Tarrant AM (2015) Life cycle 
and early development of the thecosomatous pteropod Limacina 
retroversa in the Gulf of Maine, including the effect of elevated 
 CO2 levels. Mar Biol 162(11):2235–2249

Thorp JH, Covich AP (2009) Ecology and classification of North 
American freshwater invertebrates. Academic press

Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney 
R, Hodgson DA, King JC, Pudsey CJ, Turner J (2003) Recent 

rapid regional climate warming on the Antarctic Peninsula. Clim 
Change 60(3):243–274

Waldbusser GG, Brunner EL, Haley BA, Hales B, Langdon CJ, Prahl 
FG (2013) A developmental and energetic basis linking larval 
oyster shell formation to acidification sensitivity. Geophys Res 
Lett 40:2171–2176

Waldbusser GG, Hales B, Langdon CJ, Haley BA, Schrader P, Brunner 
EL, Gray MW, Miller CA, Gimenez I (2015a) Saturation-state 
sensitivity of marine bivalve larvae to ocean acidification. Nat 
Clim Change 5:273–280

Waldbusser GG, Hales B, Langdon CJ, Haley BA, Schrader P, Brun-
ner EL, Gray MW, Miller CA, Gimenez I, Hutchinson G (2015b) 
Ocean acidification has multiple modes of action on bivalve lar-
vae. PLoS One 10:e0128376

Wang K, Hunt BP, Liang C, Pauly D, Pakhomov EA (2017) Reassess-
ment of the life cycle of the pteropod Limacina helicina from a 
high resolution interannual time series in the temperate North 
Pacific. ICES J Mar Sci. https://doi.org/10.1093/icesjms/fsx014

Watson SA, Southgate PC, Tyler PA, Peck LS (2009) Early larval 
development of the Sydney rock oyster Saccostrea glomerata 
under near-future predictions of  CO2 driven ocean acidification. 
J Shellfish Res 28(3):431–437

Weiss IM, Tuross N, Addadi LIA (2002) Mollusc larval shell forma-
tion: amorphous calcium carbonate is a precursor phase for arago-
nite. J Exp Zool 491:478–491

Wernberg T, Smale DA, Thomsen MS (2012) A decade of climate 
change experiments on marine organisms: procedures, patterns 
and problems. Glob Change Biol 18(5):1491–1498

Whitehouse MJ, Meredith MP, Rothery P, Atkinson A, Ward P, Korb 
RE (2008) Rapid warming of the ocean around South Georgia, 
Southern Ocean, during the 20th century: forcings, characteristics 
and implications for lower trophic levels. Deep Sea Res Part I 
55(10):1218–1228

Zeileis A, Hothorn T (2002) Diagnostic checking in regression rela-
tionships. R News 2(3):7–10

https://doi.org/10.1038/srep19374
https://cran.r-project.org
https://doi.org/10.1093/icesjms/fsx014

	Southern Ocean pteropods at risk from ocean warming and acidification
	Abstract 
	Introduction
	Methods
	Experimental design
	Seawater manipulation
	Statistical analysis

	Results
	Change in larval pteropod mortality
	Change in larval pteropod shell size
	Change in larval pteropod shell morphology
	Overall shell morphology

	Discussion
	Ocean acidification increases larval mortality
	Ocean acidification and warming decreases shell size
	Shell morphology is altered in a high CO2 world

	Acknowledgements 
	References




