67 research outputs found

    Conditional in vivo expression of the fusion kinase ITK-SYK

    Get PDF

    Keratinocyte-intrinsic BCL10/MALT1 activity initiates and amplifies psoriasiform skin inflammation

    Get PDF
    Psoriasis is a chronic inflammatory skin disease arising from poorly defined pathological cross-talk between keratinocytes and the immune system. BCL10 (B cell lymphoma/leukemia 10) and MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1) are ubiquitously expressed inflammatory signaling proteins that can interact with the psoriasis susceptibility factor CARD14, but their functions in psoriasis are insufficiently understood. We report that although keratinocyte-intrinsic BCL10/MALT1 deletions completely rescue inflammatory skin pathology triggered by germline Card14 gain-of-function mutation in mice, the BCL10/MALT1 signalosome is unexpectedly not involved in the CARD14-dependent interleukin-17 receptor (IL-17R) proximal pathway. Instead, it plays a more pleiotropic role by amplifying keratinocyte responses to a series of inflammatory cytokines, including IL-17A, IL-1 beta, and TNF. Moreover, selective keratinocyte-intrinsic activation of BCL10/MALT1 signaling with an artificial engager molecule is sufficient to initiate lymphocyte-mediated psoriasiform skin inflammation, and aberrant BCL10/MALT1 activity is frequently detected in the skin of human sporadic psoriasis. Together, these results establish that BCL10/MALT1 signalosomes can act as initiators and crucial amplifiers of psoriatic skin inflammation and indicate a critical function for this complex in sporadic psoriasis

    Burrowing through the heterogeneity: Review of mouse models of PTCL-NOS

    Get PDF
    Currently, there are 19 different peripheral T-cell lymphoma (PTCL) entities recognized by the World Health Organization; however, ~70% of PTCL diagnoses fall within one of three subtypes [i.e., peripheral T-cell lymphoma not otherwise specified (PTCL-NOS), anaplastic large-cell lymphoma, and angioimmunoblastic T-cell lymphoma]. PTCL-NOS is a grouping of extra-thymic neoplasms that represent a challenging and heterogeneous subset of non-Hodgkin’s lymphomas. Research into peripheral T-cell lymphomas has been cumbersome as the lack of defining cytogenetic, histological, and molecular features has stymied diagnosis and treatment of these diseases. Similarly, the lacks of genetically manipulated murine models that faithfully recapitulate disease characteristics were absent prior to the turn of the century. Herein, we review the literature concerning existing mouse models for PTLC-NOS, while paying particular attention to the etiology of this heterogeneous disease

    Characterization of a New Mouse Model for Peripheral T Cell Lymphoma in Humans

    Get PDF
    Peripheral T cell lymphomas (PTCLs) are associated with a poor prognosis due to often advanced disease at the time of diagnosis and due to a lack of efficient therapeutic options. Therefore, appropriate animal models of PTCL are vital to improve clinical management of this disease. Here, we describe a monoclonal CD8+ CD4− αβ T cell receptor Vβ2+ CD28+ T cell lymphoma line, termed T8-28. T8-28 cells were isolated from an un-manipulated adult BALB/c mouse housed under standard pathogen-free conditions. T8-28 cells induced terminal malignancy upon adoptive transfer into syngeneic BALB/c mice. Despite intracellular expression of the cytotoxic T cell differentiation marker granzyme B, T8-28 cells appeared to be defective with respect to cytotoxic activity as read-out in vitro. Among the protocols tested, only addition of interleukin 2 in vitro could partially compensate for the in vivo micro-milieu in promoting growth of the T8-28 lymphoma cells

    The fusion kinase ITK-SYK mimics a T cell receptor signal and drives oncogenesis in conditional mouse models of peripheral T cell lymphoma

    Get PDF
    Peripheral T cell lymphomas (PTCLs) are highly aggressive malignancies with poor prognosis. Their molecular pathogenesis is not well understood and small animal models for the disease are lacking. Recently, the chromosomal translocation t(5;9)(q33;q22) generating the interleukin-2 (IL-2)–inducible T cell kinase (ITK)–spleen tyrosine kinase (SYK) fusion tyrosine kinase was identified as a recurrent event in PTCL. We show that ITK-SYK associates constitutively with lipid rafts in T cells and triggers antigen-independent phosphorylation of T cell receptor (TCR)–proximal proteins. These events lead to activation of downstream pathways and acute cellular outcomes that correspond to regular TCR ligation, including up-regulation of CD69 or production of IL-2 in vitro or deletion of thymocytes and activation of peripheral T cells in vivo. Ultimately, conditional expression of patient-derived ITK-SYK in mice induces highly malignant PTCLs with 100% penetrance that resemble the human disease. Our work demonstrates that constitutively enforced antigen receptor signaling can, in principle, act as a powerful oncogenic driver. Moreover, we establish a robust clinically relevant and genetically tractable model of human PTCL

    VPS-Verschleißschutzschichten aus -TiAIX

    No full text
    • …
    corecore