56 research outputs found

    A new on-axis multimode spectrometer for the macromolecular crystallography beamlines of the Swiss Light Source

    Get PDF
    Complementary techniques greatly aid the interpretation of macromolecule structures to yield functional information, and can also help to track radiation-induced changes. A new on-axis spectrometer being integrated into the macromolecular crystallography beamlines of the Swiss Light Source is presented

    Isolation of an Asymmetric RNA Uncoating Intermediate for a Single-Stranded RNA Plant Virus

    Get PDF
    AbstractWe have determined the three-dimensional structures of both native and expanded forms of turnip crinkle virus (TCV), using cryo-electron microscopy, which allows direct visualization of the encapsidated single-stranded RNA and coat protein (CP) N-terminal regions not seen in the high-resolution X-ray structure of the virion. The expanded form, which is a putative disassembly intermediate during infection, arises from a separation of the capsid-forming domains of the CP subunits. Capsid expansion leads to the formation of pores that could allow exit of the viral RNA. A subset of the CP N-terminal regions becomes proteolytically accessible in the expanded form, although the RNA remains inaccessible to nuclease. Sedimentation velocity assays suggest that the expanded state is metastable and that expansion is not fully reversible. Proteolytically cleaved CP subunits dissociate from the capsid, presumably leading to increased electrostatic repulsion within the viral RNA. Consistent with this idea, electron microscopy images show that proteolysis introduces asymmetry into the TCV capsid and allows initial extrusion of the genome from a defined site. The apparent formation of polysomes in wheat germ extracts suggests that subsequent uncoating is linked to translation. The implication is that the viral RNA and its capsid play multiple roles during primary infections, consistent with ribosome-mediated genome uncoating to avoid host antiviral activity

    Homogeneous batch micro-crystallization of proteins from ammonium sulfate

    Get PDF
    The emergence of X-ray free-electron lasers has led to the development of serial macromolecular crystallography techniques, making it possible to study smaller and more challenging crystal systems and to perform time-resolved studies on fast time scales. For most of these studies the desired crystal size is limited to a few micrometres, and the generation of large amounts of nanocrystals or microcrystals of defined size has become a bottleneck for the wider implementation of these techniques. Despite this, methods to reliably generate microcrystals and fine-tune their size have been poorly explored. Working with three different enzymes, L-aspartate alpha-decarboxylase, copper nitrite reductase and copper amine oxidase, the precipitating properties of ammonium sulfate were exploited to quickly transition from known vapour-diffusion conditions to reproducible, large-scale batch crystallization, circumventing the tedious determination of phase diagrams. Furthermore, the specific ammonium sulfate concentration was used to fine-tune the crystal size and size distribution. Ammonium sulfate is a common precipitant in protein crystallography, making these findings applicable to many crystallization systems to facilitate the production of large amounts of microcrystals for serial macromolecular crystallography experiments.Peer reviewe

    Revealing low-dose radiation damage using single-crystal spectroscopy

    Get PDF
    Data on the rapid reduction of haem proteins in the X-ray beam at synchrotron sources are presented. The use of single-crystal spectroscopy to detect these changes and their implication for diffraction data collection from oxidized species is also discussed

    Threonine 57 is required for the post-translational activation of Escherichia coli aspartate α-decarboxylase.

    Get PDF
    Aspartate α-decarboxylase is a pyruvoyl-dependent decarboxylase required for the production of β-alanine in the bacterial pantothenate (vitamin B5) biosynthesis pathway. The pyruvoyl group is formed via the intramolecular rearrangement of a serine residue to generate a backbone ester intermediate which is cleaved to generate an N-terminal pyruvoyl group. Site-directed mutagenesis of residues adjacent to the active site, including Tyr22, Thr57 and Tyr58, reveals that only mutation of Thr57 leads to changes in the degree of post-translational activation. The crystal structure of the site-directed mutant T57V is consistent with a non-rearranged backbone, supporting the hypothesis that Thr57 is required for the formation of the ester intermediate in activation

    Extending enzyme molecular recognition with an expanded amino acid alphabet

    No full text
    Natural enzymes are constructed from the twenty proteogenic amino acids, which may then require post-translational modification or the recruitment of coenzymes or metal ions to achieve catalytic function. Here, we demonstrate that expansion of the alphabet of amino acids can also enable the properties of enzymes to be extended. A chemical mutagenesis strategy allowed a wide range of non-canonical amino acids to be systematically incorporated throughout an active site to alter enzymic substrate specificity. Specifically, 13 different non-canonical side chains were incorporated at 12 different positions within the active site of N-acetylneuraminic acid lyase (NAL), and the resulting chemically-modified enzymes were screened for activity with a range of aldehyde substrates. A modified enzyme containing a 2,3-dihydroxypropyl cysteine at position 190 was identified that had significantly increased activity for the aldol reaction of erythrose with pyruvate compared with the wild-type enzyme. Kinetic investigation of a saturation library of the canonical amino acids at the same position showed that this increased activity was not achievable with any of the 20 proteogenic amino acids. Structural and modelling studies revealed that the unique shape and functionality of the non-canonical side chain enabled the active site to be remodelled to enable more efficient stabilisation of the transition state of the reaction. The ability to exploit an expanded amino acid alphabet can thus heighten the ambitions of protein engineers wishing to develop enzymes with new catalytic properties

    A comparative analysis of the fluorescence properties of the wild-type and active site mutants of the hepatitis C virus autoprotease NS2-3

    Get PDF
    Hepatitis C virus encodes an autoprotease, NS2-3, which is required for processing of the viral polyprotein between the non-structural NS2 and NS3 proteins. This protease activity is vital for the replication and assembly of the virus and therefore represents a target for the development of anti-viral drugs. The mechanism of this auto-processing reaction is not yet clear but the protease activity has been shown to map to the C-terminal region of NS2 and the N-terminal serine protease region of NS3. The NS2-3 precursor can be expressed in Escherichia coli as inclusion bodies, purified as denatured protein and refolded, in the presence of detergents and the divalent metal ion zinc, into an active form capable of auto-cleavage. Here, intrinsic tryptophan fluorescence has been used to assess refolding in the wild-type protein and specific active site mutants. We also investigate the effects on protein folding of alterations to the reaction conditions that have been shown to prevent auto-cleavage. Our data demonstrate that these active site mutations do not solely affect the cleavage activity of the HCV NS2-3 protease but significantly affect the integrity of the global protein fold

    Time-resolved crystallography using the Hadamard transform

    Get PDF
    YesWe describe a method for performing time-resolved X-ray crystallographic experiments based on the Hadamard transform, in which time resolution is defined by the underlying periodicity of the probe pulse sequence, and signal/noise is greatly improved over that for the fastest pump-probe experiments depending on a single pulse. This approach should be applicable on standard synchrotron beamlines and will enable high-resolution measurements of protein and small-molecule structural dynamics. It is also applicable to other time-resolved measurements where a probe can be encoded, such as pump-probe spectroscopy.Wellcome Trust 4-year PhD program “The Molecular Basis of Biological Mechanisms” 089312/Z/09/Z. This work was also supported by the EPSRC Award “Dynamic Structural Science at the Research Complex at Harwell” EP/I01974X/1 and by BBSRC Award BB/H001905/1

    Evaluation of fluoropyruvate as nucleophile in reactions catalysed by N-acetyl neuraminic acid lyase variants: Scope, limitations and stereoselectivity

    Get PDF
    The catalysis of reactions involving fluoropyruvate as donor by N-acetyl neuraminic acid lyase (NAL) variants was investigated. Under kinetic control, the wild-type enzyme catalysed the reaction between fluoropyruvate and N-acetyl mannosamine to give a 90:10 ratio of the (3R,4R)- and (3S,4R)-configured products; after extended reaction times, equilibration occurred to give a 30:70 mixture of these products. The efficiency and stereoselectivity of reactions of a range of substrates catalysed by the E192N, E192N/T167V/S208V and E192N/T167G NAL variants were also studied. Using fluoropyruvate and (2R,3S)- or (2S,3R)-2,3-dihydroxy-4-oxo-N,N-dipropylbutanamide as substrates, it was possible to obtain three of the four possible diastereomeric products; for each product, the ratio of anomeric and pyranose/furanose forms was determined. The crystal structure of S. aureus NAL in complex with fluoropyruvate was determined, assisting rationalisation of the stereochemical outcome of C-C bond formation

    X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease

    Get PDF
    The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous human suffering. To date, no effective drug is available to directly treat the disease. In a search for a drug against COVID-19, we have performed a high-throughput X-ray crystallographic screen of two repurposing drug libraries against the SARS-CoV-2 main protease (M^(pro)), which is essential for viral replication. In contrast to commonly applied X-ray fragment screening experiments with molecules of low complexity, our screen tested already approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds that bind to M^(pro). In subsequent cell-based viral reduction assays, one peptidomimetic and six non-peptidic compounds showed antiviral activity at non-toxic concentrations. We identified two allosteric binding sites representing attractive targets for drug development against SARS-CoV-2
    • …
    corecore