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Aspartate �-decarboxylase is a pyruvoyl-dependent decar-

boxylase required for the production of �-alanine in the

bacterial pantothenate (vitamin B5) biosynthesis pathway. The

pyruvoyl group is formed via the intramolecular rearrange-

ment of a serine residue to generate a backbone ester

intermediate which is cleaved to generate an N-terminal

pyruvoyl group. Site-directed mutagenesis of residues adja-

cent to the active site, including Tyr22, Thr57 and Tyr58,

reveals that only mutation of Thr57 leads to changes in the

degree of post-translational activation. The crystal structure of

the site-directed mutant T57V is consistent with a non-

rearranged backbone, supporting the hypothesis that Thr57 is

required for the formation of the ester intermediate in

activation.
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1. Introduction

In bacteria, the biosynthetic pathway for pantothenate

consists of four enzymes leading from l-aspartate and �-

ketoisovalerate (2-oxo-4-methylbutyrate), an intermediate in

valine biosynthesis, to d-pantothenate (Fig. 1a; Webb et al.,

2004). While the synthesis of pantothenate is limited to

eubacteria, archaea, higher plants and fungi, pantothenate is

used in all organisms to form both coenzyme A and the

phosphopantetheine prosthetic group of acyl-carrier proteins.

The absence of the pathway in animals makes the pathway a

potential target both for antibacterial chemotherapy

(Sambandamurthy et al., 2002) and herbicide development, as

well as for engineering to enhance vitamin production (Webb

& Smith, 2011).

Aspartate �-decarboxylase (ADC) is responsible for the

decarboxylation of l-aspartate to form �-alanine in the

bacterial biosynthetic pathway (Webb et al., 2004). The further

condensation of �-alanine with d-pantoate to generate

pantothenate is catalysed by pantothenate synthetase. ADC

was first purified by Williamson & Brown (1979), who deter-

mined that the enzyme was pyruvoyl-dependent rather than

pyridoxal-dependent. The enzyme catalyses the decarboxyl-

ation of aspartate via the formation of an imine link between

the �-amino group of the amino acid and an N-terminal

pyruvoyl group (Ramjee et al., 1997). The conjugated �-

iminoamide thus formed can stabilize the nitrogen ylid

formed following decarboxylation as an extended vinylagous

�-azaenolate. Stereospecific reprotonation, attributed to

Tyr58 by Saldanha et al. (2001), then leads to the formation of

�-alanine with overall retention of configuration.

Several other pyruvoyl-dependent decarboxylases have

been described, including arginine decarboxylase (PDB entry

1n2m; Tolbert et al., 2003), histidine decarboxylase (PDB entry
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1pya; Gallagher et al., 1993), S-adenosylmethionine decar-

boxylase (PDB entry 1tmi; Toms et al., 2004) and phosphati-

dylserine decarboxylase (Schuiki & Daum, 2009). In all cases

the pyruvoyl group is formed from an internal serine residue

(Ser25 in ADC) in the zymogen (termed the �-chain) which

rearranges to form the N-terminal pyruvoyl group via an ester

intermediate analogous to the thioester intermediate observed

in intein processing (Fig. 1b; von Poelje & Snell, 1990). In the

case of ADC, this ester intermediate was observed directly in

the X-ray structure determined by Albert et al. (1998). The

activated protein therefore consists of two chains, the N-

terminal �-chain and the C-terminal �-chain, which includes

the N-terminal pyruvoyl group formed from Ser25. In the case

of ADC, hydrolysis to yield an N-terminal serine (then termed

the �0-chain) is also observed (Ramjee et al., 1997). The

structural basis for formation of the pyruvoyl group was

further investigated by Schmitzberger et al. (2003), who

reported the crystal structures of both the wild-type (WT)

zymogen (shown schematically in Fig. 1c), the constitutively

inactive S25A zymogen and a variety of other site-directed

mutants. More recently, we have reported the structure of the

N72A site-directed mutant and demonstrated that this residue

is not required for activation (Webb et al., 2012).

The structure of the WT zymogen led Schmitzberger et al.

(2003) to propose a role for residue Thr57 in an autocatalytic

activation reaction. This residue was proposed to stabilize the

zwitterionic 2-oxyoxazolidinyl intermediate formed during

ester formation via a hydrogen bond from the oxyanion to the
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Figure 1
(a) Biosynthetic pathway to pantothenate in bacteria. �-Alanine is synthesized via the decarboxylation of l-aspartate by aspartate decarboxylase
(ADC). Pantothenate synthetase (PS) catalyses the ATP-dependent ligation of �-alanine with d-pantoate to form pantothenate. Pantoate is formed from
�-ketoisovalerate via hydroxymethylation by ketopantoate hydroxymethyltransferase (KPHMT) and reduction by ketopantoate reductase (KPR). (b)
Pathway for the formation of the pyruvoyl-dependent cofactor in ADC and other pyruvoyl-dependent enzymes from the zymogenic form (termed the �-
chain). The �-hydroxyl of Ser25 attacks the carbonyl of the previous amino-acid residue (i) to form an oxyoxazolidine intermediate, which decomposes
(ii) to form an ester intermediate. E1cB elimination (iii) forms a N-terminal dehydroalanyl residue which is hydrolysed (iv) to form the pyruvoyl cofactor
(the �-chain). The ester intermediate can also be hydrolysed to yield the inactive �0-chain (v). (c) Schematic of the ADC active site based on the structure
of the WT zymogen reported by Schmitzberger et al. (2003). The �-hydroxyl group forms a hydrogen bond to the side-chain amide of Asn72, and the
backbone carbonyl of Gly24 forms a hydrogen bond to the �-hydroxyl of Thr57. The phenolic hydroxyls of both Tyr58 and Tyr22 (not shown) are
candidates to act as a base to deprotonate the hydroxyl of Ser25.



�-hydroxyl group of Thr57; this interaction was observed in

the structure of the zymogen. Albert et al. (1998) previously

proposed that the adjacent residue, Tyr58, might also be

involved in the activation of ADC. More recently, we and

others have independently reported that the activation reac-

tion is not in fact autocatalytic (Nozaki et al., 2012; Stuecker et

al., 2012). A second protein, PanZ (also known as PanM), is

required for activation in vivo. In the absence of this protein,

the expressed protein is isolated as the inactive zymogen. In

this work, we investigate the effect of mutation of other

residues expressed in a panZ+ background and report the

structure of the site-directed mutant T57V. In this manuscript,

we demonstrate that this protein is constitutively inactive; we

have subsequently used this observation to characterize the

interaction of ADC with PanZ as described elsewhere

(Monteiro et al., 2012)

2. Materials and methods

2.1. Generation of site-directed mutants

The site-directed mutants Y22F, W47A, T57V, Y58F, I60A,

S70A and I86A were generated using the QuikChange

mutagenesis protocol (Stratagene) with Escherichia coli panD

subcloned into the expression vector pRSETA as a template

together with the following oligonucleotides: Y22F, Y22FF

(5-0GCGGACCTGCACTTTGAAGGTTCTTGCGCC-30) and

Y22FR (50-GGCGCAAGAACCTTCAAAGTGCAGGTC-

CGC-30); W47A, W47AF (50-GCCATTGATATCGCGAA-

TGTCACCAACGGC-30) and W47AR (50-GCCGTT-

GGTGACATTCGCGATATCAATGGC-30); T57V, T57VF

(50-GGCAAGCGTTTCTCCGTTTATGCCATCGCG-30) and

T57VR (50-CGCGATGGCATAAACGGAGAAACGCTT-

GCC-30); I60A, I60AF (50-CCACTTATGCCGCCGCGGC-

AGAACGCGG-30) and I60AR (50-CCGCGTTCTGCCGCG-

GCGGCATAAGTGG-30); S70A, S70AF (50-CGAGAA-

TTATTGCTGTTAACGGTGCGGCGGC-30) and S70AR

(50-GCCGCCGCACCGTTAACAGCAATAATTCTCG-30);

I86A, I86AF (50-GGCGATATTGTCGCCATCGCCAGC-

TTCG-30) and I86AR (50-CGAAGCTGGCGATGGCGA-

CAATATCGCC-30). The site-directed mutant Y58F was

generated using overlap PCR using the specific primers Y58FF

(50-ACGTTTGCCATCGCGGCAGAACGCGGTTCG-30) and

Y58FR (50-GTTGCCGTTCGCAAAGAGGTGCAAACG-

GTAGCGCCGTCT-30) as described in Schmitzberger et al.

(2003). The DNA sequences of the mutated plasmids were

confirmed by DNA sequencing. Proteins were overexpressed

and purified as described previously (Schmitzberger et al., 2003).

Protein identity was confirmed by MALDI–TOF mass spectro-

metry as described previously (Webb et al., 2003) and protein

activation was analysed by Tris–tricine SDS–PAGE and mass

spectrometry.

2.2. Crystallization, data collection and processing

Crystallization trials were carried out at 17�C in hanging

drops by vapour diffusion with a 1:1 ratio of protein to

precipitant. Trials were conducted using Hampton Research

Grid Screen Ammonium Sulfate and Grid Screen Sodium

Malonate, using a range of protein concentrations from 3 to

15 mg ml�1. Crystals were obtained in 1.5, 2.9 and 3.4 M

sodium malonate pH 4 using a final protein concentration of

7.5 mg ml�1. Crystals were cryoprotected using 3.4 M sodium

malonate pH 4.0. Crystals were mounted in nylon loops

(Hampton Research) and flash-cooled in liquid nitrogen.

Diffraction data for the T57V mutant were collected on

beamline ID14-4 at the European Synchrotron Radiation

Facility (ESRF).

2.3. Crystal structure refinement

The diffraction data were indexed, integrated and scaled

using MOSFLM (Leslie, 2006) and SCALA (Evans, 2006), and

a complete list of structure factors with Rfree flags was gener-

ated using the CCP4 suite (Winn et al., 2011). The Rfree set was

comprised of a random selection of 5% of the data and was

excluded from the refinement. The structure was solved in

space group P6122 with MOLREP (Vagin & Teplyakov, 2010)

using the crystal structure of the native precursor of pyruvoyl-

dependent l-aspartate �-decarboxylase (PDB entry 1ppy;

Schmitzberger et al., 2003) as a molecular-replacement model.

Refinement was performed using REFMAC5 (Murshudov et

al., 2011), riding H atoms were included in the refinement and

B factors were refined isotropically. Model building was

performed after each round of refinement using Coot (Emsley

et al., 2010).

3. Results and discussion

3.1. Thr57 is required for the post-translational activation of
ADC

The crystal structure of the zymogen of ADC, in which

chain cleavage to form the pyruvoyl group has not yet

occurred, was determined by Schmitzberger et al. (2003). In

this work, it was suggested that the carbonyl of Gly24 forms an

essential hydrogen bond to the �-hydroxyl group of the

conserved residue Thr57, and that this residue was therefore

required for activation (Fig. 1c). Circumstantial evidence for

the requirement for Thr57 was provided by the observed

activation state of the insertion mutant S25a-A25b, in which

an additional alanine residue is inserted between Ser25 and

Cys26 (Schmitzberger et al., 2003). In the case of S25a-A25b,

the inserted Ala25b occupies the position occupied by Ser25 in

the WT zymogen structure, and the carbonyl of Ser25a can

therefore interact with Thr57 in place of the carbonyl of

Gly24. No activation was observed in this site-directed mutant.

In contrast, in the G24a-A24b mutant an alanine was inserted

between Gly24 and Ser25. This leads to an increase in the size

of the flexible loop while leaving the carbonyl of Ser25 to

interact with Thr57, and in this case trace activation was

observed after overexpression. At this time, the requirement

for PanZ in activation had not yet been demonstrated;

however, all protein expression was carried out in panZ+

E. coli strains. The observation of active protein after over-

expression but before purification and subsequent incubation
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therefore cannot determine whether a particular residue is

required for either autocatalytic or PanZ-catalysed activation.

We constructed several site-directed mutants of E. coli

ADC to confirm the role of Thr57 in activation and to

investigate the role of other conserved residues close to the

active site, including Tyr22, Trp47, Tyr58, Ile60, Ser70 and

Ile86. Tyr58 has previously been implicated in the activation of

ADC, and it was suggested that this residue acts to deproto-

nate the Ser25 �-hydroxyl (Albert et al., 1998). A total of

seven different site-directed mutants were overexpressed and

purified and their activation states were determined by gel

electrophoresis (Fig. 2). After overexpression in E. coli C41

(DE3), purified His-tagged WT ADC is obtained as a mixture

of the zymogen and the activated protein. This can readily be

determined by the presence of three bands on SDS–PAGE

gels at approximately 16, 11 and 4.5 kDa, which correspond to

the zymogen (the �-chain), the C-terminal �-chain (bearing

the pyruvoyl group) and the N-terminal �-chain. Three bands

were observed for all site-directed mutants other than T57V.

The site-directed mutants Y22F and Y58F were further

analysed by MALDI–TOF MS (Fig. 2b). In both cases, peaks

corresponding to the �-chain zymogen, the �-chain and both

the �- and �0-chains (the hydrolysis product) could be

detected, demonstrating that neither residue is required for

formation of the pyruvoyl group. This demonstrates that

neither Tyr58 nor Tyr22 is required for the activation reaction.

Initial analysis suggested that Thr57 is required for activa-

tion, as the T57V mutant cannot be catalytically activated in E.

coli at 37�C. Ramjee et al. (1997) observed an increased rate of

autocatalytic activation of purified ADC at higher tempera-

tures. To confirm that the T57V mutant is incapable of either

autocatalytic activation (or catalytic activation by trace co-

purified PanZ), the purified protein was incubated at 37 and

70�C for 3 d and re-analysed by SDS–PAGE (data not shown).

No activation could be detected by PAGE analysis; however, a

small amount of the �0- and �-chains could be detected by

mass spectroscopy (Fig. 2c). The proportion of these products

is very low compared with other proteins analysed, and

contamination of the mutant with WT protein during growth

cannot be ruled out. These observations support the hypoth-

esis that Thr57 is required for the first stage of the activation

reaction. The absence of a band corresponding to the �-chain

in this sample supports the hypothesis that Thr57 might also

be required for controlled cleavage of the ester intermediate,

as proposed by Schmitzberger et al. (2003), in a manner

analogous to His243 in human S-adenosylmethionine decar-

boxylase (Ekstrom et al., 2001).

3.2. Structural consequences of mutation of Thr57

To further investigate the role of Thr57 in activation, we

determined the three-dimensional structure of the T57V

mutant. Schmitzberger and coworkers have previously

observed that single-point mutations can lead to substantial

rearrangement of the peptide backbone. In the mutant S25A,

loss of the hydrogen-bonding interaction between the

carbonyl of Gly24 and the �-hydroxyl of Thr57 leads to a 180�

rotation of the peptide backbone such that a hydrogen-

bonding interaction occurs between the carbonyl of Gly24 and

the side-chain amide of Asn72. In the WT zymogen, this

residue instead forms a hydrogen bond to the hydroxyl of

Ser25. The deletion of the hydrogen-bonding interaction

between Thr57 and the carbonyl of Gly24 may lead to a similar

structural rearrangement. Alternatively, if Thr57 were only

required for cleavage of the ester intermediate then the

structure of this intermediate might be resolved, as was the

case for the S-adenosylmethionine decarboxylase H243A

mutant (Ekstrom et al., 2001).

The T57V mutant ADC crystallized in space group P6122

under similar conditions to those used in previous studies

(Schmitzberger et al., 2003) and was subsequently cryopro-

tected using sodium malonate. A summary of the crystal-

lographic data statistics for the final model is shown in Table 1.

The backbone is well ordered and the density map is of

sufficient quality to allow the structure to be determined for

both protomers in the asymmetric unit (Figs. 3a and 3b). The

structure of the T57V mutant is highly isostructural to the WT

zymogen (average r.m.s.d. of 1.742 Å over all atoms) described

by Schmitzberger and coworkers, with the exception of the

loop region between His17 and Cys26 (Fig. 3c; average r.m.s.d.

of 4.3 Å over all atoms). In this region, the structures of both

protomers are similar to each other but in both cases are

distinct from the structure observed for the WT zymogen. In
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Table 1
Data-collection and refinement statistics.

Values in parentheses are for the outermost shell of the resolution range.

Data collection
Beamline ID14-4, ESRF
Wavelength (Å) 0.9795
Temperature (K) 100
Space group P6122
Unit-cell parameters (Å, �) a = 69.9, c = 217.7,

� = � = 90, � = 120
Resolution (Å) 26.46–1.62 (1.67–1.62)
Rmerge 0.08 (0.48)
hIi/�(hIi) 7.4 (1.4)
Completeness (%) 97.8 (99.9)
Wilson B (Å2) 16.1
Multiplicity 4.4 (4.3)
No. of reflections 167294
No. of unique reflections 37850

Refinement
R factor 0.185 (0.329)
Rfree 0.217 (0.361)
No. of atoms

Protein 1833
Ligands 28
Water 138

Average B factors (Å2)
Protein 13.5
Malonate 16.2
Waters 23.2

R.m.s. deviations
Bond lengths (Å) 0.028
Bond angles (�) 2.72

Ramachandran statistics (%)
Most favoured 97.6
Generously allowed 2.0
Disallowed 0.4

PDB code 4azd



the T57V mutant the unprocessed chain is displaced from the

active site owing to the binding of a single molecule of

the cryoprotectant malonate (Fig. 3d), which forms ionic

interactions with both Lys9 and Arg54. In the crystal structure

of ADC from Helicobacter pylori (PDB entry 1uhd) described

by Lee & Suh (2004), Arg54 interacts with the �-carboxylate

of isoasparagine in line with the model for substrate binding

described by Saldanha et al. (2001). This adventitious inter-

action of malonate in T57V means that the loss of the

hydrogen bond between the carbonyl of Gly24 and the �-

hydroxyl of Thr57 leads to large-scale rearrangement of the

backbone relative to that observed in the WT zymogen. The

hydrogen-bond interaction observed between Ser25 and the

�-amide of Asn72 in the WT zymogen is lost owing to these

changes in the torsional angles of the chain.

3.3. Proposed role for Thr57 in the activation of ADC and
comparison with other pyruvoyl-dependent enzymes

On the basis of the crystal structure of the unprocessed WT

zymogen, Schmitzberger and coworkers proposed two

potential roles for Thr57 in the activation of ADC. The first is

that it acts as a general acid to support the formation of the

ester intermediate observed by Albert and coworkers by

supporting the formation of the negative charge in the

oxyoxazolidine intermediate; the second role is that after

formation of the ester intermediate it acts as a general base to

deprotonate the �-proton of Ser25, leading to chain cleavage

and the formation of a dehydroalanine residue. Mutation of

Thr57 leads to abolition of the activation reaction at 37�C.

This provides direct evidence for its involvement in the first

step of the activation reaction: formation of an ester inter-

mediate. The presence of bound malonate in the crystal

structure leads to displacement of the unprocessed chain. This

means that it is not possible to determine whether the

observed conformation in the zymogen is owing to the

hydrogen bond between Thr57 and the carbonyl of Gly24

(Schmitzberger et al., 2003), but it may be that the very lack of

this hydrogen bond is critical in allowing malonate to bind.

After prolonged incubation at elevated temperatures a small

amount of serinolysis can be observed in the T57V mutant by

mass spectrometry (Fig. 2b), but catalytic turnover could not

be detected (data not shown), suggesting that this residue may

also required for chemoselective cleavage of the ester inter-

mediate to form the pyruvoyl group.

A structural analysis of the activation of arginine decar-

boxylase has also been undertaken. The structure of an S53A

zymogen has been reported (PDB entry 1n2m; Tolbert,

Graham et al., 2003) and the function of two residues, Asn47

and Glu109, in the activation process has been investigated

(Soriano et al., 2008). The N47A site-directed mutant showed

a 500-fold lower catalytic activity than the WT enzyme and the

crystal structure of this mutant (PDB entry 2qqd) revealed a

mixture of activation states, including the structure of the

unactivated protein. The side chain of Asn47 is positioned

such that it can act as a hydrogen-bond donor to the carbonyl

of Ser52 and thereby support the formation of the oxyox-

azolidine intermediate in the activation reaction in a manner

analogous to Thr57 in ADC.
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Figure 2
(a) 10% Tris–tricine SDS–PAGE analysis of ADC site-directed mutants
after purification. Bands corresponding to the zymogen (�, �15.5 kDa)
and the activated �-chains (�11 kDa) and �-chains (�4.5 kDa) are
evident for all site-directed mutants other than T57V. (b) MALDI–TOF
analysis of the Y22F (black) and Y58F (grey) site-directed mutants show
two peaks at �11 kDa corresponding to the �- and �0-chains, indicating
that pyruvoyl cofactor formation occurs in both cases. (c) MALDI–TOF
analysis of T57V after prolonged incubation at 70�C reveals trace
cleavage of the protein to generate only an �0-chain with an N-terminal
serine (11 015 Da; grey trace). The proportion of �0-chain relative to �-
chain (�15.5 kDa) is very low compared with other site-directed mutants,
which are completely activated after incubation at 37�C (e.g. the black
trace for Y58F)



In human pyruvoyl-dependent S-adenosylmethionine

decarboxylase (S-AdoMetDC), rearrangement of Ser68 is

required to form the pyruvoyl group. The neighbouring

residue Ser229 has been shown to be required for activation;

site-directed mutation of this residue to alanine yielded an

enzyme which could not be activated (Xiong & Pegg, 1999). In

contrast, an H243A mutant showed a decreased rate of acti-

vation, but addition of hydroxylamine to the protein led to

chain cleavage, demonstrating that His243 is required for the

second step of cofactor generation in this enzyme. This was

subsequently confirmed by refinement of the structure of this

ester intermediate (PDB entry 1jl0, Ekstrom et al., 2001).

Although the structure of an S68A mutant of the human

enzyme has been reported (PDB entry 1msv; Tolbert, Zhang et

al., 2003), the structure of the unprocessed form of the human

WT enzyme has not been determined. Toms et al. (2004)

reported the structure of both the analogous S63A mutant

(PDB entry 1tmi) and the unprocessed WT enzyme from

Thermotoga maritima (PDB entry 1tlu). Unlike the case of

ADC, for which the unprocessed WT (PDB entry 1ppy) and

S25A mutants show distinct conformations, the two structures

are similar in the region of the cleaved chain. In the
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Figure 3
Active-site geometry of the T57V site-directed mutant of ADC. The protein is isostructural to WT ADC (PDB entry 1aw8; Albert et al., 1998) except in
the region of the active site. Electron density is shown as a 2Fo � Fc map contoured at 1� within 1.6 Å. (a, b) Electron density for the backbone from
His19 to Cys26 is well defined in both protomers of the asymmetric unit. Electron density is evident for the �-hydroxyl of Ser25 and there is no evidence
for the presence of an ester in the structure. (c) Overlay of the backbone structure for the two protomers in the asymmetric unit of the T57V mutant with
the two protomers from the unprocessed WT protein (green, T57V protomer A; yellow, T57V protomer B; blue, WT protomer A; cyan, WT protomer B).
Both protomers adopt a similar conformation distinct from either of the observed conformations in the unprocessed WT structure (PDB entry 1ppy;
Schmitzberger et al., 2003). (d) Displacement of the unprocessed chain from the position observed in the unprocessed WT structure can be attributed to
binding of malonate to Arg54 in the active site of the mutant. A bound water molecule is illustrated as a red sphere.



T. maritima S-AdometDC structure, Ser55 (analogous to

Ser229 in the human protein) is positioned on the opposite

face of the cleaved carbonyl group to the hydroxyl of Ser63

and would appear to be able to play a similar role to Thr57 in

ADC; however, the S55A mutant of the T. maritima protein

was still activated. In this protein, residue Glu62 can act as a

general base to deprotonate Ser63 and thereby promote

formation of the oxyoxazolidine intermediate; it is possible

therefore that the presence of only one of the two catalytic

residues is sufficient to promote the activation reaction in this

system.

4. Conclusion

In conclusion, we have screened the effect of mutation at

several conserved residues proximal to the active site of ADC,

including Tyr22, Thr57 and Tyr58. The latter two residues have

previously been implicated in the activation reaction by

Schmitzberger et al. (2003) and Albert et al. (1998), respec-

tively. We conclude that only Thr57 is required for activation.

The absence of a residue in PanD that is capable of depro-

tonating Ser25, as would be expected for autocatalysis,

suggests a possible role for PanZ in the catalysed reaction. A

structural analysis of the zymogen reveals that substantial

backbone rearrangement occurs as a result of the adventitious

binding of a molecule of malonate in the region of the

unformed active site; however, there is no evidence for ester

formation in the protein, suggesting that Thr57 is required for

the formation of the ester intermediate. Prolonged incubation

at high temperatures leads to trace serinolysis of the protein,

suggesting that Thr57 is also required for the second step in

activation: the specific chain cleavage to form the dehy-

droalanyl residue from which the pyruvoyl cofactor is formed.

The identification of this constitutively inactive mutant of

ADC provides a key resource to understand the activation

reaction, and we have already reported its use in character-

izing the interaction between PanD and PanZ (Monteiro et al.,

2012).
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