676 research outputs found

    Using the Interaction Geography Slicer to Visualize New York City Stop & Frisk

    Get PDF
    This paper adapts and uses a dynamic visualization environment called the Interaction Geography Slicer (IGS) developed by the 1st author to visualize data about New York City’s Stop & Frisk Program. Findings and discussion focus on how this environment provides new ways to view, interact with and query large-scale data sets over space and through time to support analyses of and public discussion about New York City’s Stop & Frisk Program

    High-frequency performance of Schottky source/drain silicon pMOS devices

    Get PDF
    A radio-frequency performance of 85-nm gate-length p-type Schottky barrier (SB) with PtSi source/drain materials is investigated. The impact of silicidation annealing temperature on the high-frequency behavior of SB MOSFETs is analyzed using an extrinsic small-signal equivalent circuit. It is demonstrated that the current drive and the gate transconductance strongly depend on the silicidation anneal temperature, whereas the unity-gain cutoff frequency of the measured devices remains nearly unchanged

    Laser frequency locking by direct measurement of detuning

    Full text link
    We present a new method of laser frequency locking in which the feedback signal is directly proportional to the detuning from an atomic transition, even at detunings many times the natural linewidth of the transition. Our method is a form of sub-Doppler polarization spectroscopy, based on measuring two Stokes parameters (I2I_2 and I3I_3) of light transmitted through a vapor cell. This extends the linear capture range of the lock loop by up to an order of magnitude and provides equivalent or improved frequency discrimination as other commonly used locking techniques.Comment: 4 pages, 4 figures Revte

    James Ralph Scales : a case study of sixteen years of university leadership

    Get PDF
    The purpose of this research was to identify factors in the leadership of James Ralph Scales during his presidency at Wake Forest University, 1967-1983. The identification of these factors was made through a historical and biographical case study. A second purpose was to compare Scales' leadership factors with those of five selected leadership frameworks. The case study analysis identified Scales' leadership factors as (1) constancy of "fit" between his style, values, and personal history and the style, values, and history of the institution; (2) an unmistakable commitment to the faculty as central to academic excellence; (3) a persistent articulation of the core values of an intellectual community; (4) a tolerance for situations requiring the management of ambiguity; (5) a spirit of magnanimity; (6) an active promotion of a climate of "possibility" through debate and personal initiative; (7) a sense of humor and an attractive physical presence; (8) a habit of person centered communication; and (9) a willingness to take risks because of a trust in the institution's resources

    Genotyping-by-sequencing resolves relationships in Polygonaceae tribe Eriogoneae

    Get PDF
    The resolution of cryptic diversity is essential for understanding the evolutionary diversification of lineages and establishing conservation priorities. We examine relationships in Eriogoneae (Polygonaceae), a diverse lineage in western North America. We ask whether Eriogonum umbellatum, a morphologically and ecologically diverse species, is monophyletic and whether its varieties represent evolutionary lineages. We use genotyping-by-sequencing to assemble a SNP dataset for 51 species in the genera Chorizanthe, Eriogonum and Sidotheca. We report a hierarchical phylogenetic analysis using maximum likelihood to estimate the evolutionary history of Eriogoneae. We illustrate admixture components for 21 populations of E. umbellatum, representing four varieties, and test for lineage structure using TreeMix. We identify strongly supported clades within Eriogoneae. Many relationships in the Eucycla + Oregonium and Latifolia clades are supported, while most relationships within the Eriogonum subg. Oligogonum clade and a clade with most Chorizanthe remain unresolved. Eriogonum congdonii resolves within the main E. umbellatum clade, while populations of three varieties of E. umbellatum are closely related to E. ursinum and are associated with serpentine soils. ADmixture and TreeMix analyses suggest E. umbellatum varieties represent evolutionary lineages. These results from SNP data are largely consistent with previous phylogenetic studies of Eriogoneae based on sequence variation. Structure within Oligogonum suggests consistent environmental association and radiation after initial colonization of serpentine. Morphology is unreliable for the infraspecific taxonomy of E. umbellatum. Additional molecular studies are needed to resolve the evolutionary relationships and ecological diversification within this species, in Oligogonum, and in Eriogoneae. © 2021 The Authors. TAXON published by John Wiley & Sons Ltd on behalf of International Association for Plant Taxonomy.We thank SGIker research support services at the University of the Basque Country, Leioa, Spain for DNA extraction and quality control, and acknowledge Centro Nacional de d-An?lisi Gen?mica in Barcelona, Spain for GBS sequencing. We thank J. Andre, N.J. Jensen and J. Steele for contributing samples and D. Marino for collaboration in nucleic acid extractions. We acknowledge the contributions of O. Lao Grueso to the?ADmixture and TreeMix analyses. We thank U.S. Forest Service employees D. Austin, J. Fedorchuk, M. Friend, J. Haas, D. Ikeda, L. Janeway, J. Nelson, D. Netz, A. Sanger, and S. Weis among others for facilitating permitting and collecting. This work was supported by funds from the Basque Government in support of the Terrestrial Plant Diversity group of the Department of Plant Biology and Ecology, University of the Basque Country, and an ERC Advanced Grant, FP7-IDEAS-ERC, ?ADAPT?, project 339941 awarded to T. Brown. We thank SGIker research support services at the University of the Basque Country, Leioa, Spain for DNA extraction and quality control, and acknowledge Centro Nacional de d‐Anàlisi Genòmica in Barcelona, Spain for GBS sequencing. We thank J. Andre, N.J. Jensen and J. Steele for contributing samples and D. Marino for collaboration in nucleic acid extractions. We acknowledge the contributions of O. Lao Grueso to the ADmixture and TreeMix analyses. We thank U.S. Forest Service employees D. Austin, J. Fedorchuk, M. Friend, J. Haas, D. Ikeda, L. Janeway, J. Nelson, D. Netz, A. Sanger, and S. Weis among others for facilitating permitting and collecting. This work was supported by funds from the Basque Government in support of the Terrestrial Plant Diversity group of the Department of Plant Biology and Ecology, University of the Basque Country, and an ERC Advanced Grant, FP7‐IDEAS‐ERC, ‘ADAPT’, project 339941 awarded to T. Brown

    Temperature Range Shifts for Three European Tree Species over the Last 10,000 Years.

    Get PDF
    We quantified the degree to which the relationship between the geographic distribution of three major European tree species, Abies alba, Fagus sylvatica and Picea abies and January temperature (Tjan) has remained stable over the past 10,000 years. We used an extended data-set of fossil pollen records over Europe to reconstruct spatial variation in Tjan values for each 1000-year time slice between 10,000 and 3000 years BP (before present). We evaluated the relationships between the occurrences of the three species at each time slice and the spatially interpolated Tjan values, and compared these to their modern temperature ranges. Our results reveal that F. sylvatica and P. abies experienced Tjan ranges during the Holocene that differ from those of the present, while A. alba occurred over a Tjan range that is comparable to its modern one. Our data suggest the need for re-evaluation of the assumption of stable climate tolerances at a scale of several thousand years. The temperature range instability in our observed data independently validates similar results based exclusively on modeled Holocene temperatures. Our study complements previous studies that used modeled data by identifying variation in frequencies of occurrence of populations within the limits of suitable climate. However, substantial changes that were observed in the realized thermal niches over the Holocene tend to suggest that predicting future species distributions should not solely be based on modern realized niches, and needs to account for the past variation in the climate variables that drive species ranges

    Marguerite McIntire Correspondence

    Get PDF
    Entries include biographical information, a typed letter, and a handwritten card from McIntire

    WISE/NEOWISE Preliminary Analysis and Highlights of the 67P/Churyumov-Gerasimenko Near Nucleus Environs

    Get PDF
    On January 18-19 and June 28-29 of 2010, the Wide-field Infrared Survey Explorer (WISE) spacecraft imaged the Rosetta mission target, comet 67P/Churyumov-Gerasimenko. We present a preliminary analysis of the images, which provide a characterization of the dust environment at heliocentric distances similar to those planned for the initial spacecraft encounter, but on the outbound leg of its orbit rather than the inbound. Broad-band photometry yields low levels of CO2 production at a comet heliocentric distance of 3.32 AU and no detectable production at 4.18 AU. We find that at these heliocentric distances, large dust grains with mean grain diameters on the order of a millimeter or greater dominate the coma and evolve to populate the tail. This is further supported by broad-band photometry centered on the nucleus, which yield an estimated differential dust particle size distribution with a power law relation that is considerably shallower than average. We set a 3-sigma upper limit constraint on the albedo of the large-grain dust at <= 0.12. Our best estimate of the nucleus radius (1.82 +/- 0.20 km) and albedo (0.04 +/- 0.01) are in agreement with measurements previously reported in the literature

    Invasion success of a global avian invader is explained by within-taxon niche structure and association with humans in the native range

    Get PDF
    Aim To mitigate the threat invasive species pose to ecosystem functioning, reli- able risk assessment is paramount. Spatially explicit predictions of invasion risk obtained through bioclimatic envelope models calibrated with native species distribution data can play a critical role in invasive species management. Fore- casts of invasion risk to novel environments, however, remain controversial. Here, we assess how species’ association with human-modified habitats in the native range and within-taxon niche structure shape the distribution of invasive populations at biogeographical scales and influence the reliability of predictions of invasion risk. Location Africa, Asia and Europe. Methods We use ~1200 native and invasive ring-necked parakeet (Psittacula krameri) occurrences and associated data on establishment success in combi- nation with mtDNA-based phylogeographic structure to assess niche dynam- ics during biological invasion and to generate predictions of invasion risk. Niche dynamics were quantified in a gridded environmental space while bioclimatic models were created using the biomod2 ensemble modelling framework. Results Ring-necked parakeets show considerable niche expansion into climates colder than their native range. Only when incorporating a measure of human modification of habitats within the native range do bioclimatic envelope mod- els yield credible predictions of invasion risk for parakeets across Europe. Inva- sion risk derived from models that account for differing niche requirements of phylogeographic lineages and those that do not achieve similar statistical accu- racy, but there are pronounced differences in areas predicted to be susceptible for invasion. Main conclusions Information on within-taxon niche structure and especially association with humans in the native range can substantially improve predic- tive models of invasion risk. To provide policymakers with robust predictions of invasion risk, including these factors into bioclimatic envelope models is recommended

    The role of seagrass vegetation and local environmental conditions in shaping benthic bacterial and macroinvertebrate communities in a tropical coastal lagoon

    Get PDF
    We investigated the influence of seagrass canopies on the benthic biodiversity of bacteria and macroinvertebrates in a Red Sea tropical lagoon. Changes in abundance, number of taxa and assemblage structure were analyzed in response to seagrass densities (low, SLD; high, SHD; seagrasses with algae, SA), and compared with unvegetated sediments. Biological and environmental variables were examined in these four habitats (hereafter called treatments), both in the underlaying sediments and overlaying waters, at three randomly picked locations in March 2017. Differences between treatments were more apparent in the benthic habitat than in the overlaying waters. The presence of vegetation (more than its cover) and changes in sedimentary features (grain size and metals) at local scales influenced the observed biological patterns, particularly for macroinvertebrates. Of note, the highest percentage of exclusive macroinvertebrate taxa (18% of the gamma diversity) was observed in the SHD treatment peaking in the SA for bacteria. Benthic macroinvertebrates and bacteria shared a generally low number of taxa across treatments and locations; approximately, 25% of the gamma diversity was shared among all treatments and locations for macrofauna, dropping to 11% for bacteria. Given the low overlap in the species distribution across the lagoon, sustaining the connectivity among heterogeneous soft sediment habitats appears to be essential for maintaining regional biodiversity. This study addresses a current scientific gap related to the relative contributions of vegetated and unvegetated habitats to biodiversity in tropical regions.Peer reviewe
    corecore