110 research outputs found

    Will REDD+ work? The need for interdisciplinary research to address key challenges

    Get PDF
    In this article, we draw on the contributions to this issue to address the question ‘Will REDD+ work?’. We do so by differentiating between how, where and when REDD+ might work. The article shows how issues of scope, scale and pace of REDD+ are related, and how interdisciplinary research can help to distill the lessons learned from REDD+ efforts currently underway. Important research areas include the drivers of deforestation and forest degradation, monitoring, reporting and verification, co-benefits, governance capacity, linkages with related policies, and the environmental and social impacts of REDD+. In concluding, we highlight the role of interdisciplinary research in supporting the different actors involved in REDD+ to cope with the inherent heterogeneity and complexity of REDD+

    Impact of agroecological management on plant diversity and soil-based ecosystem services in pasture and coffee systems in the Atlantic forest of Brazil

    Get PDF
    The development of agroecosystems that can provide multiple ecosystem services with a reduced need of external inputs, requires management practices that foster ecological processes to enhance soil quality and crop productivity. We assessed the direct and indirect impacts of farmers’ management practices on plant diversity, soil quality and crop productivity in coffee and pasture fields belonging to different types of farms: agroecological, conventional, and large-scale. The study was carried out in twelve farms in the Zona da Mata, Brazil. For each of the total of 24 fields (twelve pastures and twelve coffee) we recorded 41 variables associated with management practices, indicators of plant diversity (taxonomical, structural and functional diversity) and soil quality (biological, chemical and physical properties). The direct and indirect effects of management on plant diversity, soil quality and in the case of coffee, crop productivity, were assessed using structural equation models. In the case of pastures, we found that increased plant diversity due to agroecological management resulted in higher soil quality, probably due to higher soil litter cover and plant structural heterogeneity. Yet, practices presented in the agroecological farms also had a direct negative effect on soil quality, which indicates that increased plant diversity in pastures needs to be combined with other agroecological management practices than currently adopted. In the case of coffee, we show that despite the higher weeding intensity and higher use of external inputs in large-scale and conventional coffee farming systems, these practices did not result in increased soil quality or coffee productivity as compared to agroecological systems. In contrast, agroecological coffee management was associated with increased plant diversity, which, in turn, was positively associated with soil microbial biomass carbon. Our results highlight a causal pathway of agroecological management leading to increased plant diversity and, in turn, maintenance or increase in soil quality. While no causal link between agroecological coffee management and coffee productivity could be demonstrated, the biodiversity-mediated pathway resulted in similar coffee productivity in agroecological farms as compared to conventionally managed farms, which relied on pesticides and higher inputs of chemical fertilizers. We conclude that agroecological practices can be efficient to maintain satisfactory crop yields and soil fertility without the need of intensive use of external inputs and weeding.</p

    Linking vegetation and soil functions during secondary forest succession in the Atlantic forest

    Get PDF
    Secondary forest succession can be an effective and low-cost strategy to increase forest cover and the associated biodiversity and soil functions. However, little is known about how soil functions develop during succession, and how vegetation attributes influence soil functions, especially in highly biodiverse and fragmented landscapes in the tropics. Here we assessed a wide range of indicators of taxonomic (e.g. number of tree species), structural (e.g. basal area, canopy openness) and functional diversity (e.g. community weighted means of functional traits) of tree species, as well as indicators for soil functions related to soil organic matter accumulation, nutrient cycling and soil cover in secondary forest patches ranging from 5 to 80 years. Two recently abandoned agricultural fields were included as the starting point of forest succession and two primary forest patches served as references for the end point of forest succession. Four ecological hypotheses, centred around the role of functional diversity, structural diversity and biomass, were tested to explore mechanisms in which forest vegetation may influence soil functions. Most measures of structural, taxonomic and functional diversity converged to values found in primary forests after 25–50 years of succession, whereas functional composition changed from acquisitive to conservative species. Soil carbon and nutrient cycling showed a quick recovery to the levels of primary forests after 15 years of succession. Although soil cover also increased during succession, levels of primary forests were not reached within 80 years. Variation in tree height and trait dominance were identified as aboveground drivers of carbon and nutrient cycling, while aboveground biomass was the main driver of litter accumulation, and the associated soil cover and water retention. Our results indicate that secondary forest succession can lead to a relative fast recovery of nutrient and carbon cycling functions, but not of soil cover. Our findings highlight the essential role of secondary forests in providing multiple ecosystem services. These results can be used to inform management and reforestation programmes targeted at strengthening soil functions, such as soil cover, nutrient and carbon cycling.Previo

    Pre-Columbian soil fertilization and current management maintain food resource availability in old-growth Amazonian forests

    Get PDF
    Aims: The extent and persistence of pre-Columbian human legacies in old-growth Amazonian forests are still controversial, partly because modern societies re-occupied old settlements, challenging the distinction between pre- and post-Columbian legacies. Here, we compared the effects of pre-Columbian vs. recent landscape domestication processes on soils and vegetation in two Amazonian regions. Methods: We studied forest landscapes at varying distances from pre-Columbian and current settlements inside protected areas occupied by traditional and indigenous peoples in the lower TapajĂłs and the upper-middle Madeira river basins. By conducting 69 free-listing interviews, participatory mappings, guided-tours, 27 forest inventories, and soil analysis, we assessed the influences of pre-Columbian and current activities in soils and plant resources surrounding the settlements. Results: In both regions, we found that pre-Columbian villages were more densely distributed across the landscape than current villages. Soil nutrients (mainly Ca and P) were higher closer to pre-Columbian villages but were generally not related to current villages, suggesting past soil fertilization. Soil charcoal was frequent in all forests, suggesting frequent fire events. The density of domesticated plants used for food increased in phosphorus enriched soils. In contrast, the density of plants used for construction decreased near current villages. Conclusions: We detected a significant effect of past soil fertilization on food resources over extensive areas, supporting the hypothesis that pre-Columbian landscape domestication left persistent marks on Amazonian landscapes. Our results suggest that a combination of pre-Columbian phosphorus fertilization with past and current management drives plant resource availability in old-growth forests.</p

    Can timber provision from Amazonian production forests be sustainable?

    Get PDF
    Around 30 Mm3 of sawlogs are extracted annually by selective logging of natural production forests in Amazonia, Earth's most extensive tropical forest. Decisions concerning the management of these production forests will be of major importance for Amazonian forests' fate. To date, no regional assessment of selective logging sustainability supports decision-making. Based on data from 3500 ha of forest inventory plots, our modelling results show that the average periodic harvests of 20 m3 ha−1 will not recover by the end of a standard 30 year cutting cycle. Timber recovery within a cutting cycle is enhanced by commercial acceptance of more species and with the adoption of longer cutting cycles and lower logging intensities. Recovery rates are faster in Western Amazonia than on the Guiana Shield. Our simulations suggest that regardless of cutting cycle duration and logging intensities, selectively logged forests are unlikely to meet timber demands over the long term as timber stocks are predicted to steadily decline. There is thus an urgent need to develop an integrated forest resource management policy that combines active management of production forests with the restoration of degraded and secondary forests for timber production. Without better management, reduced timber harvests and continued timber production declines are unavoidable

    Modelling carbon stock and carbon sequestration ecosystem services for policy design: a comprehensive approach using a dynamic vegetation model

    Get PDF
    Ecosystem service (ES) models can only inform policy design adequately if they incorporate ecological processes. We used the Lund-Potsdam-Jena managed Land (LPJmL) model, to address following questions for Mexico, Bolivia and Brazilian Amazon: (i) How different are C stocks and C sequestration quantifications under standard (when soil and litter C and heterotrophic respiration are not considered) and comprehensive (including all C stock and heterotrophic respiration) approach? and (ii) How does the valuation of C stock and C sequestration differ in national payments for ES and global C funds or markets when comparing both approach? We found that up to 65% of C stocks have not been taken into account by neglecting to include C stored in soil and litter, resulting in gross underpayments (up to 500 times lower). Since emissions from heterotrophic respiration of organic material offset a large proportion of C gained through growth of living matter, we found that markets and decision-makers are inadvertently overestimating up to 100 times C sequestrated. New approaches for modelling C services relevant ecological process-based can help accounting for C in soil, litter and heterotrophic respiration and become important for the operationalization of agreements on climate change mitigation following the COP21 in 2015

    Chapter 28: Restoration Options for the Amazon

    Get PDF
    This chapter examines site-specific opportunities and approaches for restoring terrestrial and aquatic systems, focusing on local actions and their immediate benefits. Landscape, catchment, and biome-wide considerations are addressed in Chapter 29. Conservation approaches are addressed in Chapter 2
    • 

    corecore