392 research outputs found

    The genome sequence of <i>Trypanosoma brucei gambiense</i>, causative agent of chronic Human African Trypanosomiasis

    Get PDF
    &lt;p&gt;&lt;b&gt;Background:&lt;/b&gt; &lt;i&gt;Trypanosoma brucei gambiense&lt;/i&gt; is the causative agent of chronic Human African Trypanosomiasis or sleeping sickness, a disease endemic across often poor and rural areas of Western and Central Africa. We have previously published the genome sequence of a &lt;i&gt;T. b. brucei&lt;/i&gt; isolate, and have now employed a comparative genomics approach to understand the scale of genomic variation between &lt;i&gt;T. b. gambiense&lt;/i&gt; and the reference genome. We sought to identify features that were uniquely associated with &lt;i&gt;T. b. gambiense&lt;/i&gt; and its ability to infect humans.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methods and findings:&lt;/b&gt; An improved high-quality draft genome sequence for the group 1 &lt;i&gt;T. b. gambiense&lt;/i&gt; DAL 972 isolate was produced using a whole-genome shotgun strategy. Comparison with &lt;i&gt;T. b. brucei&lt;/i&gt; showed that sequence identity averages 99.2% in coding regions, and gene order is largely collinear. However, variation associated with segmental duplications and tandem gene arrays suggests some reduction of functional repertoire in &lt;i&gt;T. b. gambiense&lt;/i&gt; DAL 972. A comparison of the variant surface glycoproteins (VSG) in &lt;i&gt;T. b. brucei&lt;/i&gt; with all &lt;i&gt;T. b. gambiense&lt;/i&gt; sequence reads showed that the essential structural repertoire of VSG domains is conserved across &lt;i&gt;T. brucei&lt;/i&gt;.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions:&lt;/b&gt; This study provides the first estimate of intraspecific genomic variation within &lt;i&gt;T. brucei&lt;/i&gt;, and so has important consequences for future population genomics studies. We have shown that the &lt;i&gt;T. b. gambiense&lt;/i&gt; genome corresponds closely with the reference, which should therefore be an effective scaffold for any &lt;i&gt;T. brucei&lt;/i&gt; genome sequence data. As VSG repertoire is also well conserved, it may be feasible to describe the total diversity of variant antigens. While we describe several as yet uncharacterized gene families with predicted cell surface roles that were expanded in number in &lt;i&gt;T. b. brucei&lt;/i&gt;, no &lt;i&gt;T. b. gambiense&lt;/i&gt;-specific gene was identified outside of the subtelomeres that could explain the ability to infect humans.&lt;/p&gt

    Telomeric expression sites are highly conserved in trypanosoma brucei

    Get PDF
    Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs) of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs). The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs) were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology

    Trypanosoma brucei gambiense group 1 is distinguished by a unique amino acid substitution in the HpHb receptor implicated in human serum resistance

    Get PDF
    Trypanosoma brucei rhodesiense (Tbr) and T. b. gambiense (Tbg), causative agents of Human African Trypanosomiasis (sleeping sickness) in Africa, have evolved alternative mechanisms of resisting the activity of trypanosome lytic factors (TLFs), components of innate immunity in human serum that protect against infection by other African trypanosomes. In Tbr, lytic activity is suppressed by the Tbr-specific serum-resistance associated (SRA) protein. The mechanism in Tbg is less well understood but has been hypothesized to involve altered activity and expression of haptoglobin haemoglobin receptor (HpHbR). HpHbR has been shown to facilitate internalization of TLF-1 in T.b. brucei (Tbb), a member of the T. brucei species complex that is susceptible to human serum. By evaluating the genetic variability of HpHbR in a comprehensive geographical and taxonomic context, we show that a single substitution that replaces leucine with serine at position 210 is conserved in the most widespread form of Tbg (Tbg group 1) and not found in related taxa, which are either human serum susceptible (Tbb) or known to resist lysis via an alternative mechanism (Tbr and Tbg group 2). We hypothesize that this single substitution contributes to reduced uptake of TLF and thus may play a key role in conferring serum resistance to Tbg group 1. In contrast, similarity in HpHbR sequence among isolates of Tbg group 2 and Tbb/Tbr provides further evidence that human serum resistance in Tbg group 2 is likely independent of HpHbR functio

    Antigenic diversity is generated by distinct evolutionary mechanisms in African trypanosome species

    Get PDF
    Antigenic variation enables pathogens to avoid the host immune response by continual switching of surface proteins. The protozoan blood parasite Trypanosoma brucei causes human African trypanosomiasis ("sleeping sickness") across sub-Saharan Africa and is a model system for antigenic variation, surviving by periodically replacing a monolayer of variant surface glycoproteins (VSG) that covers its cell surface. We compared the genome of Trypanosoma brucei with two closely related parasites Trypanosoma congolense and Trypanosoma vivax, to reveal how the variant antigen repertoire has evolved and how it might affect contemporary antigenic diversity. We reconstruct VSG diversification showing that Trypanosoma congolense uses variant antigens derived from multiple ancestral VSG lineages, whereas in Trypanosoma brucei VSG have recent origins, and ancestral gene lineages have been repeatedly co-opted to novel functions. These historical differences are reflected in fundamental differences between species in the scale and mechanism of recombination. Using phylogenetic incompatibility as a metric for genetic exchange, we show that the frequency of recombination is comparable between Trypanosoma congolense and Trypanosoma brucei but is much lower in Trypanosoma vivax. Furthermore, in showing that the C-terminal domain of Trypanosoma brucei VSG plays a crucial role in facilitating exchange, we reveal substantial species differences in the mechanism of VSG diversification. Our results demonstrate how past VSG evolution indirectly determines the ability of contemporary parasites to generate novel variant antigens through recombination and suggest that the current model for antigenic variation in Trypanosoma brucei is only one means by which these parasites maintain chronic infections

    Differences between <i>Trypanosoma brucei gambiense</i> groups 1 and 2 in their resistance to killing by Trypanolytic factor 1

    Get PDF
    &lt;p&gt;&lt;b&gt;Background:&lt;/b&gt; The three sub-species of &lt;i&gt;Trypanosoma brucei&lt;/i&gt; are important pathogens of sub-Saharan Africa. &lt;i&gt;T. b. brucei&lt;/i&gt; is unable to infect humans due to sensitivity to trypanosome lytic factors (TLF) 1 and 2 found in human serum. &lt;i&gt;T. b. rhodesiense&lt;/i&gt; and &lt;i&gt;T. b. gambiense&lt;/i&gt; are able to resist lysis by TLF. There are two distinct sub-groups of &lt;i&gt;T. b. gambiense&lt;/i&gt; that differ genetically and by human serum resistance phenotypes. Group 1 &lt;i&gt;T. b. gambiense&lt;/i&gt; have an invariant phenotype whereas group 2 show variable resistance. Previous data indicated that group 1 &lt;i&gt;T. b. gambiense&lt;/i&gt; are resistant to TLF-1 due in-part to reduced uptake of TLF-1 mediated by reduced expression of the TLF-1 receptor (the haptoglobin-hemoglobin receptor (&lt;i&gt;HpHbR&lt;/i&gt;)) gene. Here we investigate if this is also true in group 2 parasites.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methodology:&lt;/b&gt; Isogenic resistant and sensitive group 2 &lt;i&gt;T. b. gambiense&lt;/i&gt; were derived and compared to other T. brucei parasites. Both resistant and sensitive lines express the &lt;i&gt;HpHbR&lt;/i&gt; gene at similar levels and internalized fluorescently labeled TLF-1 similar fashion to &lt;i&gt;T. b. brucei&lt;/i&gt;. Both resistant and sensitive group 2, as well as group 1 &lt;i&gt;T. b. gambiense&lt;/i&gt;, internalize recombinant APOL1, but only sensitive group 2 parasites are lysed.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions:&lt;/b&gt; Our data indicate that, despite group 1 &lt;i&gt;T. b. gambiense&lt;/i&gt; avoiding TLF-1, it is resistant to the main lytic component, APOL1. Similarly group 2 &lt;i&gt;T. b. gambiense&lt;/i&gt; is innately resistant to APOL1, which could be based on the same mechanism. However, group 2 &lt;i&gt;T. b. gambiense&lt;/i&gt; variably displays this phenotype and expression does not appear to correlate with a change in expression site or expression of &lt;i&gt;HpHbR&lt;/i&gt;. Thus there are differences in the mechanism of human serum resistance between &lt;i&gt;T. b. gambiense&lt;/i&gt; groups 1 and 2.&lt;/p&gt

    Using detergent to enhance detection sensitivity of African trypanosomes in human CSF and blood by Loop-Mediated Isothermal Amplification (LAMP)

    Get PDF
    &lt;p&gt;&lt;b&gt;Background:&lt;/b&gt; The loop-mediated isothermal amplification (LAMP) assay, with its advantages of simplicity, rapidity and cost effectiveness, has evolved as one of the most sensitive and specific methods for the detection of a broad range of pathogenic microorganisms including African trypanosomes. While many LAMP-based assays are sufficiently sensitive to detect DNA well below the amount present in a single parasite, the detection limit of the assay is restricted by the number of parasites present in the volume of sample assayed; i.e. 1 per µL or 103 per mL. We hypothesized that clinical sensitivities that mimic analytical limits based on parasite DNA could be approached or even obtained by simply adding detergent to the samples prior to LAMP assay.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methodology/Principal Findings:&lt;/b&gt; For proof of principle we used two different LAMP assays capable of detecting 0.1 fg genomic DNA (0.001 parasite). The assay was tested on dilution series of intact bloodstream form Trypanosoma brucei rhodesiense in human cerebrospinal fluid (CSF) or blood with or without the addition of the detergent Triton X-100 and 60 min incubation at ambient temperature. With human CSF and in the absence of detergent, the LAMP detection limit for live intact parasites using 1 µL of CSF as the source of template was at best 103 parasites/mL. Remarkably, detergent enhanced LAMP assay reaches sensitivity about 100 to 1000-fold lower; i.e. 10 to 1 parasite/mL. Similar detergent-mediated increases in LAMP assay analytical sensitivity were also found using DNA extracted from filter paper cards containing blood pretreated with detergent before card spotting or blood samples spotted on detergent pretreated cards.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions/Significance:&lt;/b&gt; This simple procedure for the enhanced detection of live African trypanosomes in biological fluids by LAMP paves the way for the adaptation of LAMP for the economical and sensitive diagnosis of other protozoan parasites and microorganisms that cause diseases that plague the developing world.&lt;/p&gt

    Identification of sVSG117 as an immunodiagnostic antigen and evaluation of a dual-antigen lateral flow test for the diagnosis of human african trypanosomiasis

    Get PDF
    The diagnosis of human African trypanosomiasis (HAT) caused by Trypanosoma brucei gambiense relies mainly on the Card Agglutination Test for Trypanosomiasis (CATT). There is no immunodiagnostic for HAT caused by T. b. rhodesiense. Our principle aim was to develop a prototype lateral flow test that might be an improvement on CATT.Pools of infection and control sera were screened against four different soluble form variant surface glycoproteins (sVSGs) by ELISA and one, sVSG117, showed particularly strong immunoreactivity to pooled infection sera. Using individual sera, sVSG117 was shown to be able to discriminate between T. b. gambiense infection and control sera by both ELISA and lateral flow test. The sVSG117 antigen was subsequently used with a previously described recombinant diagnostic antigen, rISG65, to create a dual-antigen lateral flow test prototype. The latter was used blind in a virtual field trial of 431 randomized infection and control sera from the WHO HAT Specimen Biobank.In the virtual field trial, using two positive antigen bands as the criterion for infection, the sVSG117 and rISG65 dual-antigen lateral flow test prototype showed a sensitivity of 97.3% (95% CI: 93.3 to 99.2) and a specificity of 83.3% (95% CI: 76.4 to 88.9) for the detection of T. b. gambiense infections. The device was not as good for detecting T. b. rhodesiense infections using two positive antigen bands as the criterion for infection, with a sensitivity of 58.9% (95% CI: 44.9 to 71.9) and specificity of 97.3% (95% CI: 90.7 to 99.7). However, using one or both positive antigen band(s) as the criterion for T. b. rhodesiense infection improved the sensitivity to 83.9% (95% CI: 71.7 to 92.4) with a specificity of 85.3% (95% CI: 75.3 to 92.4). These results encourage further development of the dual-antigen device for clinical use

    The TgsGP gene is essential for resistance to human serum in Trypanosoma brucei gambiense

    Get PDF
    Trypanosoma brucei gambiense causes 97% of all cases of African sleeping sickness, a fatal disease of sub-Saharan Africa. Most species of trypanosome, such as T. b. brucei, are unable to infect humans due to the trypanolytic serum protein apolipoprotein-L1 (APOL1) delivered via two trypanosome lytic factors (TLF-1 and TLF-2). Understanding how T. b. gambiense overcomes these factors and infects humans is of major importance in the fight against this disease. Previous work indicated that a failure to take up TLF-1 in T. b. gambiense contributes to resistance to TLF-1, although another mechanism is required to overcome TLF-2. Here, we have examined a T. b. gambiense specific gene, TgsGP, which had previously been suggested, but not shown, to be involved in serum resistance. We show that TgsGP is essential for resistance to lysis as deletion of TgsGP in T. b. gambiense renders the parasites sensitive to human serum and recombinant APOL1. Deletion of TgsGP in T. b. gambiense modified to uptake TLF-1 showed sensitivity to TLF-1, APOL1 and human serum. Reintroducing TgsGP into knockout parasite lines restored resistance. We conclude that TgsGP is essential for human serum resistance in T. b. gambiense

    Gene Conversion Transfers the GAF-A Domain of Phosphodiesterase TbrPDEB1 to One Allele of TbrPDEB2 of Trypanosoma brucei

    Get PDF
    Cyclic nucleotide specific phosphodiesterases are important regulators of cyclic nucleotide signalling in eukaryotes. In many organisms, including humans and trypanosomes, some of these enzymes contain specific domains (GAF domains) that bind cyclic nucleotides, and that are involved in the regulation of the catalytic domain. In the parasitic protozoon that causes human sleeping sickness, Trypanosoma brucei, two closely related phosphodiesterases each contain two such GAF domains, GAF-A and GAF-B. Their genes are tandemly located on chromosome 9, spaced by only a few thousand nucleotides. We here show that a gene conversion event has exchanged the region that codes for the GAF-A domain of the downstream gene by the closely similar corresponding sequence of the upstream gene. This domain exchange has no effect on intracellular localization of the two enzymes. The gene conversion event has occurred in one particular strain of trypanosomes (Lister427) and is found in all its derivatives, but not in any other strain or isolate. The presence or absence of this gene conversion represents a useful analytical marker for the stringent discrimination of Lister427 derivatives from other trypanosome strains
    • …
    corecore