538 research outputs found

    Investigation of Mobility Limiting Mechanisms in Undoped Si/SiGe Heterostructures

    Full text link
    We perform detailed magnetotransport studies on two-dimensional electron gases (2DEGs) formed in undoped Si/SiGe heterostructures in order to identify the electron mobility limiting mechanisms in this increasingly important materials system. By analyzing data from 26 wafers with different heterostructure growth profiles we observe a strong correlation between the background oxygen concentration in the Si quantum well and the maximum mobility. The highest quality wafer supports a 2DEG with a mobility of 160,000 cm^2/Vs at a density 2.17 x 10^11/cm^2 and exhibits a metal-to-insulator transition at a critical density 0.46 x 10^11/cm^2. We extract a valley splitting of approximately 150 microeV at a magnetic field of 1.8 T. These results provide evidence that undoped Si/SiGe heterostructures are suitable for the fabrication of few-electron quantum dots.Comment: Related papers at http://pettagroup.princeton.ed

    Effects of Size, Caudal Autotomy, and Predator Kairomones on the Foraging Behavior of Alleghany Mountain Dusky Salamanders (Desmognathus ochrophaeus)

    Full text link
    Prey must balance the conflicting demands of foraging and defensive behavior. Foraging under the threat of predation may be further complicated among species that engage in caudal autotomy, the loss of a portion of the tail at preformed breakage planes, because the tail may serve as an important energy storage organ and contribute to motility, culminating in a trade-off between foraging and predator avoidance. As a result of the advantages conferred by the presence of a tail, individuals that have recently undergone autotomy may be more motivated to forage despite elevated levels of threat indicated by predator kairomones. We used a full factorial design to evaluate the combined effects of body size, exposure to predator kairomones, and experience with autotomy on the latency to strike at Drosophila prey, number of strikes, and prey captured per strike by Allegheny Mountain dusky salamanders (Desmognathus ochrophaeus). In our study, caudal autotomy was the only significant main effect and influenced both the latency to attack prey and the number of strikes attempted. In terms of latency to attack prey, there was a significant interaction between body size and autotomy such that small salamanders (≤3.2 cm SVL) without tails delayed their foraging behavior. In terms of the number of strikes toward prey, there was a significant interaction between autotomy and exposure to predator kairomones such that individuals with intact tails exhibited a greater number of strikes, with the exception of the large (\u3e3.2 cm SVL) salamanders, which performed fewer strikes when exposed to the snake kairomones. There was no significant effect on foraging efficiency, although the trend in the data suggests that autotomized individuals forage more efficiently. This study was designed to evaluate the confluence of factors related to size, caudal autotomy, and exposure to stimuli from predators and hints at the magnitude of caudal autotomy on antipredator decision- making. Our data suggest that despite the importance of tail tissue for energy storage, locomotion, and mating, salamanders without tails are cautious when foraging under elevated risk

    Classification of burn injuries using near-infrared spectroscopy.

    Get PDF
    Early surgical management of those burn injuries that will not heal spontaneously is critical. The decision to excise and graft is based on a visual assessment that is often inaccurate but yet continues to be the primary means of grading the injury. Superficial and intermediate partial-thickness injuries generally heal with appropriate wound care while deep partial- and full-thickness injuries generally require surgery. This study explores the possibility of using near-infrared spectroscopy to provide an objective and accurate means of distinguishing shallow injuries from deeper burns that require surgery. Twenty burn injuries are studied in five animals, with burns covering <1% of the total body surface area. Carefully controlled superficial, intermediate, and deep partial-thickness injuries as well as full-thickness injuries could be studied with this model. Near-infrared reflectance spectroscopy was used to evaluate these injuries 1 to 3 hours after the insult. A probabilistic model employing partial least-squares logistic regression was used to determine the degree of injury, shallow (superficial or intermediate partial) from deep (deep partial and full thickness), based on the reflectance spectrum of the wound. A leave-animal-out cross-validation strategy was used to test the predictive ability of a 2-latent variable, partial least-squares logistic regression model to distinguish deep burn injuries from shallow injuries. The model displayed reasonable ranking quality as summarized by the area under the receiver operator characteristics curve, AUC = 0.879. Fixing the threshold for the class boundaries at 0.5 probability, the model sensitivity (true positive fraction) to separate deep from shallow burns was 0.90, while model specificity (true negative fraction) was 0.83. Using an acute porcine model of thermal burn injuries, the potential of near-infrared spectroscopy to distinguish between shallow healing burns and deeper burn injuries was demonstrated. While these results should be considered as preliminary and require clinical validation, a probabilistic model capable of differentiating these classes of burns would be a significant aid to the burn specialist

    Functional disability and social participation restriction associated with chronic conditions in middle-aged and older adults

    Get PDF
    Abstract : Background. We examine the population impact on functional disability and social participation of physical and mental chronic conditions individually and in combination. Methods. Cross-sectional, population-based data from community-dwelling people aged 45 years and over living in the 10 Canadian provinces in 2008–2009 were used to estimate the population attributable risk (PAR) for functional disability in basic (ADL) and instrumental (IADL) activities of daily living and social participation restrictions for individual and combinations of chronic conditions, stratified by age and gender, after adjusting for confounding variables. Results. Five chronic conditions (arthritis, depression, diabetes, heart disease and eye disease) made the largest contributions to ADL-related and IADL-related functional disability and social participation restrictions, with variation in magnitude and ranking by age and gender. While arthritis was consistently associated with higher PARs across gender and most age groups, depression, alone and in combination with the physical chronic conditions, was associated with ADL and IADL disability as well as social participation restrictions in the younger age groups, especially among women. Compared to women, the combinations of conditions associated with higher PARs in men more often included heart disease and diabetes. Conclusions. Our findings suggest that in community dwelling middle-aged and older adults, the impact of combinations of mental and physical chronic conditions on functional disability and social participation restriction is substantial and differed by gender and age. Recognising the differences in the drivers of PAR by gender and age group will ultimately increase the efficiency of clinical and public health interventions

    Large-scale synchrony of gap dynamics and the distribution of understory tree species in maple-beech forests

    Get PDF
    Large-scale synchronous variations in community dynamics are well documented for a vast array of organisms, but are considerably less understood for forest trees. Because of temporal variations in canopy gap dynamics, forest communities—even old-growth ones—are never at equilibrium at the stand scale. This paucity of equilibrium may also be true at the regional scale. Our objectives were to determine (1) if nonequilibrium dynamics caused by temporal variations in the formation of canopy gaps are regionally synchronized, and (2) if spatiotemporal variations in canopy gap formation aVect the relative abundance of tree species in the understory. We examined these questions by analyzing variations in the suppression and release history of Acer saccharum Marsh. and Fagus grandifolia Ehrh. from 481 growth series of understory saplings taken from 34 mature stands. We observed that (1) the proportion of stems in release as a function of time exhibited a U-shaped pattern over the last 35 years, with the lowest levels occurring during 1975–1985, and that (2) the response to this in terms of species composition was that A. saccharum became more abundant at sites that had the highest proportion of stems in release during 1975–1985. We concluded that the understory dynamics, typically thought of as a stand-scale process, may be regionally synchronized

    Eurasian Arctic greening reveals teleconnections and the potential for novel ecosystems

    Get PDF
    Arctic warming has been linked to observed increases in tundra shrub cover and growth in recent decades on the basis of significant relationships between deciduous shrub growth/biomass and temperature. These vegetation trends have been linked to Arctic sea ice decline and thus to the sea ice/albedo feedback known as Arctic amplification. However, the interactions between climate, sea ice and tundra vegetation remain poorly understood. Here we reveal a 50- year growth response over a >100,000 km2 area to a rise in summer temperature for alder (Alnus) and willow (Salix), the most abundant shrub genera respectively at and north of the continental treeline. We demonstrate that whereas plant productivity is related to sea ice in late spring, the growing season peak responds to persistent synoptic-scale air masses over West Siberia associated with Fennoscandian weather systems through the Rossby wave train. Substrate is important for biomass accumulation, yet a strong correlation between growth and temperature encompasses all observed soil types. Vegetation is especially responsive to temperature in early summer. These results have significant implications for modelling present and future Low Arctic vegetation responses to climate change, and emphasize the potential for structurally novel ecosystems to emerge fromwithin the tundra zone.Vertaisarviointia edeltävä käsikirjoitu

    Efficient multi-class fetal brain segmentation in high resolution MRI reconstructions with noisy labels

    Full text link
    Segmentation of the developing fetal brain is an important step in quantitative analyses. However, manual segmentation is a very time-consuming task which is prone to error and must be completed by highly specialized indi-viduals. Super-resolution reconstruction of fetal MRI has become standard for processing such data as it improves image quality and resolution. However, dif-ferent pipelines result in slightly different outputs, further complicating the gen-eralization of segmentation methods aiming to segment super-resolution data. Therefore, we propose using transfer learning with noisy multi-class labels to automatically segment high resolution fetal brain MRIs using a single set of seg-mentations created with one reconstruction method and tested for generalizability across other reconstruction methods. Our results show that the network can auto-matically segment fetal brain reconstructions into 7 different tissue types, regard-less of reconstruction method used. Transfer learning offers some advantages when compared to training without pre-initialized weights, but the network trained on clean labels had more accurate segmentations overall. No additional manual segmentations were required. Therefore, the proposed network has the potential to eliminate the need for manual segmentations needed in quantitative analyses of the fetal brain independent of reconstruction method used, offering an unbiased way to quantify normal and pathological neurodevelopment.Comment: Accepted for publication at PIPPI MICCAI 202

    Melanoma cells break down LPA to establish local gradients that drive chemotactic dispersal.

    Get PDF
    The high mortality of melanoma is caused by rapid spread of cancer cells, which occurs unusually early in tumour evolution. Unlike most solid tumours, thickness rather than cytological markers or differentiation is the best guide to metastatic potential. Multiple stimuli that drive melanoma cell migration have been described, but it is not clear which are responsible for invasion, nor if chemotactic gradients exist in real tumours. In a chamber-based assay for melanoma dispersal, we find that cells migrate efficiently away from one another, even in initially homogeneous medium. This dispersal is driven by positive chemotaxis rather than chemorepulsion or contact inhibition. The principal chemoattractant, unexpectedly active across all tumour stages, is the lipid agonist lysophosphatidic acid (LPA) acting through the LPA receptor LPAR1. LPA induces chemotaxis of remarkable accuracy, and is both necessary and sufficient for chemotaxis and invasion in 2-D and 3-D assays. Growth factors, often described as tumour attractants, cause negligible chemotaxis themselves, but potentiate chemotaxis to LPA. Cells rapidly break down LPA present at substantial levels in culture medium and normal skin to generate outward-facing gradients. We measure LPA gradients across the margins of melanomas in vivo, confirming the physiological importance of our results. We conclude that LPA chemotaxis provides a strong drive for melanoma cells to invade outwards. Cells create their own gradients by acting as a sink, breaking down locally present LPA, and thus forming a gradient that is low in the tumour and high in the surrounding areas. The key step is not acquisition of sensitivity to the chemoattractant, but rather the tumour growing to break down enough LPA to form a gradient. Thus the stimulus that drives cell dispersal is not the presence of LPA itself, but the self-generated, outward-directed gradient
    corecore