94 research outputs found

    How the Rassemblement National is using local government to ‘mainstream’

    Get PDF
    Despite making significant electoral gains over the past decade, the French Rassemblement National remains excluded from power due to its extremist reputation. Examining its showcase town of Hénin-Beaumont, Fred Paxton and Timothy Peace show how the party is using the local level of government to ‘mainstream’ and project a more competent, government-ready image

    Window dressing? The mainstreaming strategy of the Rassemblement National in power at the local level of government

    Get PDF
    Populist radical right (PRR) parties have increasingly occupied positions of power in recent years, inspiring much scholarly interest in the mainstreaming consequences of government responsibility. This article analyses the extent and manner of mainstreaming of the Rassemblement National (RN) while in power at the local level of government in France. A municipal-level focus enables the novel inclusion of the party into the debate about the consequences of government participation for the PRR. We conduct a paired case study analysis of RN-led Hénin-Beaumont, the political base of Marine Le Pen and her ‘de-demonization’ strategy, alongside nearby Lens, which is led by a mainstream party. We analyse the policy and discourse of the administration through a qualitative content analysis of mayoral statements and data from semi-structured interviews with local politicians. The results show a partial mainstreaming due to the strategic exercise of local government power to present a more moderate and capable image, as well as the use of populist discourse to frame mainstream opposition forces and the local press as working against the interests of ‘the people’

    Impact of Booster Breaks and Computer Prompts on Physical Activity and Sedentary Behavior Among Desk-Based Workers: A Cluster-Randomized Controlled Trial

    Get PDF
    Introduction The 15-minute work break provides an opportunity to promote health, yet few studies have examined this part of the workday. We studied physical activity and sedentary behavior among office workers and compared the results of the Booster Break program with those of a second intervention and a control group to determine whether the Booster Break program improved physical and behavioral health outcomes. Methods We conducted a 3-arm, cluster-randomized controlled trial at 4 worksites in Texas from 2010 through 2013 to compare a group-based, structured Booster Break program to an individual-based computer-prompt intervention and a usual-break control group; we analyzed physiologic, behavioral, and employee measures such as work social support, quality of life, and perceived stress. We also identified consistent and inconsistent attendees of the Booster Break sessions. Results We obtained data from 175 participants (mean age, 43 y; 67% racial/ethnic minority). Compared with the other groups, the consistent Booster Break attendees had greater weekly pedometer counts (P \u3c .001), significant decreases in sedentary behavior and self-reported leisure-time physical activity (P \u3c .001), and a significant increase in triglyceride concentrations (P = .02) (levels remained within the normal range). Usual-break participants significantly increased their body mass index, whereas Booster Break participants maintained body mass index status during the 6 months. Overall, Booster Break participants were 6.8 and 4.3 times more likely to have decreases in BMI and weekend sedentary time, respectively, than usual-break participants. Conclusion Findings varied among the 3 study groups; however, results indicate the potential for consistent attendees of the Booster Break intervention to achieve significant, positive changes related to physical activity, sedentary behavior, and body mass index

    Comparison of the Effects of RAS vs. Kain-Fritsch Convective Schemes on Katrina Forecasts with GEOS-5

    Get PDF
    Global forecasts were made with the 0.25-degree latitude version of GEOS-5, with the RAS scheme and with the Kain-Fritsch scheme. Examination was made of the Katrina (2005) hurricane simulation. Replacement of the RAS convective scheme with the K-F scheme results in a much more vigorous Katrina, closer to reality. Still, the result is not as vigorous as reality. In terms of wind maximum, the gap was closed by ~50%. The result seems to be due to the RAS scheme drying out the boundary layer, thus hampering the grid-scale secondary circulation and attending cyclone development. The RAS case never developed a full warm core, whereas the K-F case did. Not shown here: The K-F scheme also resulted in a more vigorous storm than when GEOS-5 is run with no convective parameterization. Also not shown: An experiment in which the RAS firing level was moved up by 3 model levels resulted in a stronger, warm-core storm, though not as strong as the K-F case. Effects on storm track were noticed, but not studied

    Asteroseismic measurement of slow, nearly uniform surface-to-core rotation in the main-sequence F star KIC 9244992

    Get PDF
    We have found a rotationally split series of core g-mode triplets and surface p-mode multiplets in a main-sequence F star, KIC 9244992. Comparison with models shows that the star has a mass of about 1.45 M�, and is at an advanced stage of main-sequence evolution in which the central hydrogen abundance mass fraction is reduced to about 0.1. This is the second case, following KIC 11145123, of an asteroseismic determination of the rotation of the deep core and surface of an A-F main-sequence star. We have found, essentially model independently, that the rotation near the surface, obtained from p-mode splittings, is 66 d, slightly slower than the rotation of 64 d in the core, measured by g-mode splittings. KIC 9244992 is similar to KIC 11145123 in that both are near the end of main-sequence stage with very slow and nearly uniform rotation. This indicates the angular momentum transport in the interior of an A-F star during the main-sequence stage is much stronger than that expected from standard theoretical formulations

    An astrophysical interpretation of the remarkable g-mode frequency groups of the rapidly rotating γ Dor star, KIC 5608334

    Get PDF
    The Fourier spectrum of the γ-Dor variable KIC 5608334 shows remarkable frequency groups at ∼3, ∼6, ∼9, and 11–12 d−1. We explain the four frequency groups as prograde sectoral g modes in a rapidly rotating star. Frequencies of intermediate-to-high radial order prograde sectoral g modes in a rapidly rotating star are proportional to |m| (i.e. ν∝|m|) in the corotating frame as well as in the inertial frame. This property is consistent with the frequency groups of KIC 5608334 as well as the period versus period-spacing relation present within each frequency group, if we assume a rotation frequency of 2.2 d−1, and that each frequency group consists of prograde sectoral g modes of |m| = 1, 2, 3, and 4, respectively. In addition, these modes naturally satisfy near-resonance conditions νi ≈ νj + νk with mi = mj + mk. We even find exact resonance frequency conditions (within the precise measurement uncertainties) in many cases, which correspond to combination frequencies

    Discovery of a Disrupting Open Cluster Far into the Milky Way Halo: A Recent Star Formation Event in the Leading Arm of the Magellanic Stream?

    Get PDF
    We report the discovery of a young (tau similar to 117 Myr), low-mass (M similar to 1200 M.), metal-poor ([Fe H] similar to -1.14) stellar association at a heliocentric distance D approximate to 28.7 kpc, placing it far into the Milky Way (MW) halo. At its present Galactocentric position (R, z) similar to (23, 15) kpc, the association is (on the sky) near the leading arm of the gas stream emanating from the Magellanic Cloud system, but is located approximate to 60 degrees from the Large Magellanic Cloud center on the other side of the MW disk. If the cluster is colocated with H I gas in the stream, we directly measure the distance to the leading arm of the Magellanic stream. The measured distance is inconsistent with Magellanic stream model predictions that do not account for ram pressure and gas interaction with the MW disk. The estimated age of the cluster is consistent with the time of last passage of the leading arm gas through the Galactic midplane; we therefore speculate that this star formation event was triggered by its last disk midplane passage. Most details of this idea remain a puzzle: the Magellanic stream has low column density, the MW disk at large radii has low gas density, and the relative velocity of the leading arm and MW gas is large. However it formed, the discovery of a young stellar cluster in the MW halo presents an interesting opportunity for study. This cluster was discovered with Gaia astrometry and photometry alone, but follow-up DECam photometry was crucial for measuring its properties.National Science Foundation (NSF) [AST-1813881]; Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory (NOAO) [2018A-0251]; Center for Computational AstrophysicsThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Patterns of deep-sea genetic connectivity in the New Zealand region : implications for management of benthic ecosystems

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 7 (2012): e49474, doi:10.1371/journal.pone.0049474.Patterns of genetic connectivity are increasingly considered in the design of marine protected areas (MPAs) in both shallow and deep water. In the New Zealand Exclusive Economic Zone (EEZ), deep-sea communities at upper bathyal depths (<2000 m) are vulnerable to anthropogenic disturbance from fishing and potential mining operations. Currently, patterns of genetic connectivity among deep-sea populations throughout New Zealand’s EEZ are not well understood. Using the mitochondrial Cytochrome Oxidase I and 16S rRNA genes as genetic markers, this study aimed to elucidate patterns of genetic connectivity among populations of two common benthic invertebrates with contrasting life history strategies. Populations of the squat lobster Munida gracilis and the polychaete Hyalinoecia longibranchiata were sampled from continental slope, seamount, and offshore rise habitats on the Chatham Rise, Hikurangi Margin, and Challenger Plateau. For the polychaete, significant population structure was detected among distinct populations on the Chatham Rise, the Hikurangi Margin, and the Challenger Plateau. Significant genetic differences existed between slope and seamount populations on the Hikurangi Margin, as did evidence of population differentiation between the northeast and southwest parts of the Chatham Rise. In contrast, no significant population structure was detected across the study area for the squat lobster. Patterns of genetic connectivity in Hyalinoecia longibranchiata are likely influenced by a number of factors including current regimes that operate on varying spatial and temporal scales to produce potential barriers to dispersal. The striking difference in population structure between species can be attributed to differences in life history strategies. The results of this study are discussed in the context of existing conservation areas that are intended to manage anthropogenic threats to deep-sea benthic communities in the New Zealand region.This work was funded in part by a Fulbright Fellowship administered by Fulbright New Zealand and the U.S. Department of State, awarded in 2011 to EKB. Funding and support for research expedition was provided by Land Information New Zealand, New Zealand Ministry of Fisheries, NIWA, Census of Marine Life on Seamounts (CenSeam), and the Foundation for Research, Science and Technology. Other research funding was provided by the New Zealand Ministry of Science and Innovation project “Impacts of resource use on vulnerable deep-sea communities” (FRST contract CO1X0906), the National Science Foundation (OCE-0647612), and the Deep Ocean Exploration Institute (Fellowship support to TMS)
    corecore